Massive MIMO for decentralized estimation over coherent multiple access channels

A. Shirazinia, S. Dey, D. Ciuonzo, P. Rossi
{"title":"Massive MIMO for decentralized estimation over coherent multiple access channels","authors":"A. Shirazinia, S. Dey, D. Ciuonzo, P. Rossi","doi":"10.1109/SPAWC.2015.7227036","DOIUrl":null,"url":null,"abstract":"We consider a decentralized multisensor estimation problem where L sensor nodes observe noisy versions of a possibly correlated random source. The sensors amplify and forward their observations over a fading coherent multiple access channel (MAC) to a fusion center (FC). The FC is equipped with a large array of N antennas, and adopts a minimum mean square error (MMSE) approach for estimating the source. We optimize the amplification factor (or equivalently transmission power) at each sensor node in two different scenarios: 1) with the objective of total power minimization subject to mean square error (MSE) of source estimation constraint, and 2) with the objective of minimizing MSE subject to total power constraint. For this purpose, we apply an asymptotic approximation based on the massive multiple-input-multiple-output (MIMO) favorable propagation condition (when L ≪ N). We use convex optimization techniques to solve for the optimal sensor power allocation in 1) and 2). In 1), we show that the total power consumption at the sensors decays as 1/N, replicating the power savings obtained in Massive MIMO mobile communications literature. Through numerical studies, we also illustrate the superiority of the proposed optimal power allocation methods over uniform power allocation.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider a decentralized multisensor estimation problem where L sensor nodes observe noisy versions of a possibly correlated random source. The sensors amplify and forward their observations over a fading coherent multiple access channel (MAC) to a fusion center (FC). The FC is equipped with a large array of N antennas, and adopts a minimum mean square error (MMSE) approach for estimating the source. We optimize the amplification factor (or equivalently transmission power) at each sensor node in two different scenarios: 1) with the objective of total power minimization subject to mean square error (MSE) of source estimation constraint, and 2) with the objective of minimizing MSE subject to total power constraint. For this purpose, we apply an asymptotic approximation based on the massive multiple-input-multiple-output (MIMO) favorable propagation condition (when L ≪ N). We use convex optimization techniques to solve for the optimal sensor power allocation in 1) and 2). In 1), we show that the total power consumption at the sensors decays as 1/N, replicating the power savings obtained in Massive MIMO mobile communications literature. Through numerical studies, we also illustrate the superiority of the proposed optimal power allocation methods over uniform power allocation.
相干多址信道上的大规模MIMO分散估计
我们考虑了一个分散的多传感器估计问题,其中L个传感器节点观察到一个可能相关的随机源的噪声版本。传感器通过衰落相干多址信道(MAC)将观测结果放大并转发到融合中心(FC)。FC配备了大量的N天线阵列,并采用最小均方误差(MMSE)方法估计信号源。我们在两种不同的情况下优化每个传感器节点的放大因子(或等效的传输功率):1)在源估计的均方误差(MSE)约束下以总功率最小为目标,2)在总功率约束下以MSE最小为目标。为此,我们基于大规模多输入多输出(MIMO)有利的传播条件(当L≪N时)应用渐近逼近。我们使用凸优化技术在1)和2)中求解传感器的最佳功率分配。在1)中,我们表明传感器的总功耗衰减为1/N,与大规模多输入多输出(MIMO)移动通信文献中获得的功耗节省相同。通过数值研究,我们也说明了所提出的最优功率分配方法相对于均匀功率分配方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信