D. Greenhill, Ron Ho, D. Lewis, H. Schmit, Kok Hong Chan, Andy Tong, Sean Atsatt, D. How, Peter McElheny, Keith Duwel, J. Schulz, Darren Faulkner, Gopal Iyer, George Chen, Hee Kong Phoon, Han Wooi Lim, Wei-Yee Koay, Ty Garibay
{"title":"3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration","authors":"D. Greenhill, Ron Ho, D. Lewis, H. Schmit, Kok Hong Chan, Andy Tong, Sean Atsatt, D. How, Peter McElheny, Keith Duwel, J. Schulz, Darren Faulkner, Gopal Iyer, George Chen, Hee Kong Phoon, Han Wooi Lim, Wei-Yee Koay, Ty Garibay","doi":"10.1109/ISSCC.2017.7870257","DOIUrl":null,"url":null,"abstract":"A Field Programmable Gate Array (FPGA) family was designed to match a programmable fabric die built in 14nm process technology with 28Gb/s transceiver dice. The 2.5D packaging (Fig. 3.3.1) uses embedded interconnect bridges (EMIB) [1]. 20nm transceivers were reused enabling a transceiver roadmap independent of FPGA fabric. Fig. 3.3.2 shows a 560mm2 fabric die and six transceiver dice. The programmable fabric contains 2.8M logic elements, DSP, memory components, and routing interconnect operating at up to 1GHz. Applications drove the need for improved flexibility and security of the FPGA configuration system. A triple-modular redundant microprocessor-based secure device manager (SDM) was designed and is programmed by embedded software.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
A Field Programmable Gate Array (FPGA) family was designed to match a programmable fabric die built in 14nm process technology with 28Gb/s transceiver dice. The 2.5D packaging (Fig. 3.3.1) uses embedded interconnect bridges (EMIB) [1]. 20nm transceivers were reused enabling a transceiver roadmap independent of FPGA fabric. Fig. 3.3.2 shows a 560mm2 fabric die and six transceiver dice. The programmable fabric contains 2.8M logic elements, DSP, memory components, and routing interconnect operating at up to 1GHz. Applications drove the need for improved flexibility and security of the FPGA configuration system. A triple-modular redundant microprocessor-based secure device manager (SDM) was designed and is programmed by embedded software.