Recommending paragraphs of wikipedia pages as a travel guide

M. Tokuhisa, Yuuki Ishihara, Shuhei Kimura, Kenta Oku
{"title":"Recommending paragraphs of wikipedia pages as a travel guide","authors":"M. Tokuhisa, Yuuki Ishihara, Shuhei Kimura, Kenta Oku","doi":"10.1109/IWCIA.2016.7805749","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to recommend paragraphs of Wikipedia pages as a travel guide. This method helps tourists (users) read attractive descriptions of Wikipedia pages during their travel. In order to rate paragraphs, importance, non-redundancy, and novelty of the paragraphs are evaluated based on a Tf-Idf manner. Especially, novelty is done by user's experience estimated from geo-tagged tweets located to places that the user visited in the past. As the results of the experiments, we confirmed the geo-tagged tweets reflected user's experience and the recommendations exceeded the expectation of MAP criteria.","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a method to recommend paragraphs of Wikipedia pages as a travel guide. This method helps tourists (users) read attractive descriptions of Wikipedia pages during their travel. In order to rate paragraphs, importance, non-redundancy, and novelty of the paragraphs are evaluated based on a Tf-Idf manner. Especially, novelty is done by user's experience estimated from geo-tagged tweets located to places that the user visited in the past. As the results of the experiments, we confirmed the geo-tagged tweets reflected user's experience and the recommendations exceeded the expectation of MAP criteria.
推荐维基百科页面的段落作为旅游指南
本文提出了一种推荐维基百科页面段落作为旅游指南的方法。这种方法可以帮助游客(用户)在旅行中阅读维基百科页面的吸引人的描述。为了对段落进行评级,段落的重要性、非冗余性和新颖性基于Tf-Idf方式进行评估。特别是,新颖性是通过用户的经验来实现的,这些经验是通过定位用户过去访问过的地方的地理标记tweet来估计的。实验结果表明,地理标记推文反映了用户体验,推荐超出了MAP标准的预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信