Tuning stereo image matching with stereo video sequence processing

A. Speers, M. Jenkin
{"title":"Tuning stereo image matching with stereo video sequence processing","authors":"A. Speers, M. Jenkin","doi":"10.1145/2160749.2160792","DOIUrl":null,"url":null,"abstract":"Algorithms for stereo video image processing typicaly assume that the various tasks; calibration, static stereo matching, and egomotion are independent black boxes. In particular, the task of computing disparity estimates is normally performed independently of ongoing egomotion and environmental recovery processes. Can information from these processes be exploited in the notoriously hard problem of disparity field estimation? Here we explore the use of feedback from the environmental model being constructed to the static stereopsis task. A prior estimate of the disparity field is used to seed the stereomatching process within a probabilistic framework. Experimental results on simulated and real data demonstrate the potential of the approach.","PeriodicalId":407345,"journal":{"name":"Joint International Conference on Human-Centered Computer Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint International Conference on Human-Centered Computer Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2160749.2160792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Algorithms for stereo video image processing typicaly assume that the various tasks; calibration, static stereo matching, and egomotion are independent black boxes. In particular, the task of computing disparity estimates is normally performed independently of ongoing egomotion and environmental recovery processes. Can information from these processes be exploited in the notoriously hard problem of disparity field estimation? Here we explore the use of feedback from the environmental model being constructed to the static stereopsis task. A prior estimate of the disparity field is used to seed the stereomatching process within a probabilistic framework. Experimental results on simulated and real data demonstrate the potential of the approach.
调整立体图像匹配与立体视频序列处理
立体视频图像处理算法通常假定各种任务;校准、静态立体匹配和自我运动是独立的黑盒子。特别是,计算差异估计的任务通常独立于正在进行的自我情绪和环境恢复过程。这些过程的信息能否用于视差场估计这个众所周知的难题?在这里,我们将探讨从环境模型构建到静态立体视觉任务的反馈使用。利用视差场的先验估计在概率框架内播种立体匹配过程。仿真和实际数据的实验结果表明了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信