Forecasting the CPI Using a Hybrid Sarima and Neural Network Model with Web News Articles

Hui Yuan, Dailing Zhang, Wei Xu, Mingming Wang, Wenda Dong
{"title":"Forecasting the CPI Using a Hybrid Sarima and Neural Network Model with Web News Articles","authors":"Hui Yuan, Dailing Zhang, Wei Xu, Mingming Wang, Wenda Dong","doi":"10.1109/BIFE.2013.19","DOIUrl":null,"url":null,"abstract":"Web news fills our life from national affairs to small matters, containing the latent useful information that can reflect the trend of consumer price index. Most previous studies forecast the CPI basing on the historical data while in this paper, the external information is considered and modeled by using the combination of neutral network and seasonal ARIMA model in order to correct the forecasting error for more accurate prediction. The experiments show that the proposed method is better than both the single neutral network and the seasonal ARIMA. The findings imply the web news can bring more precise results in CPI forecasting.","PeriodicalId":174908,"journal":{"name":"2013 Sixth International Conference on Business Intelligence and Financial Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Conference on Business Intelligence and Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIFE.2013.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Web news fills our life from national affairs to small matters, containing the latent useful information that can reflect the trend of consumer price index. Most previous studies forecast the CPI basing on the historical data while in this paper, the external information is considered and modeled by using the combination of neutral network and seasonal ARIMA model in order to correct the forecasting error for more accurate prediction. The experiments show that the proposed method is better than both the single neutral network and the seasonal ARIMA. The findings imply the web news can bring more precise results in CPI forecasting.
基于网络新闻文章的Sarima和神经网络混合模型预测CPI
网络新闻充斥着我们的生活,从国家大事到小事,其中蕴含着潜在的有用信息,可以反映消费者物价指数的走势。以往的研究大多基于历史数据对CPI进行预测,而本文则考虑外部信息,采用中性网络与季节性ARIMA模型相结合的方法进行建模,以修正预测误差,使预测更加准确。实验结果表明,该方法优于单一神经网络和季节性ARIMA。研究结果表明,网络新闻在CPI预测中可以带来更精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信