{"title":"РОЗПОДІЛЕНА САМООРГАНІЗОВАНА СИСТЕМА ПРОГНОЗУВАННЯ ЗЛОВМИСНОЇ АКТИВНОСТІ В КОМП’ЮТЕРНИХ МЕРЕЖАХ","authors":"Антоніна Каштальян, Денис Любінецький","doi":"10.31891/2219-9365-2022-72-4-5","DOIUrl":null,"url":null,"abstract":"У роботі розроблено самоорганізовану систему прогнозування зловмисної активності в комп’ютерній мережі згідно алгоритмів роботи глибокого навчання. Крім того, було представлено нову самоорганізовану інкрементну нейронну мережу під назвою FG-SOINN написану мовою програмування Python. У SOINN видалення вузлів і ребер визначається двома параметрами, які потрібно оптимізувати для кожної наявної програми за допомогою перехресної перевірки або подібних підходів повторної вибірки. FG-SOINN усуває цей недолік, розглядаючи видалення вузлів і ребер як невід’ємну частину процесу навчання. Було сформульовано три концепції для формування «сміттєвого забуття»: час простою, надійність і корисність завдяки чому мережа видаляє вузли та ребра. Така мережа базується на концепті «навчання без вчителя» і може працювати із штучними та реальними даними і, навіть, за раптових або повторюваних відхилень.","PeriodicalId":128911,"journal":{"name":"MEASURING AND COMPUTING DEVICES IN TECHNOLOGICAL PROCESSES","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MEASURING AND COMPUTING DEVICES IN TECHNOLOGICAL PROCESSES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31891/2219-9365-2022-72-4-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
У роботі розроблено самоорганізовану систему прогнозування зловмисної активності в комп’ютерній мережі згідно алгоритмів роботи глибокого навчання. Крім того, було представлено нову самоорганізовану інкрементну нейронну мережу під назвою FG-SOINN написану мовою програмування Python. У SOINN видалення вузлів і ребер визначається двома параметрами, які потрібно оптимізувати для кожної наявної програми за допомогою перехресної перевірки або подібних підходів повторної вибірки. FG-SOINN усуває цей недолік, розглядаючи видалення вузлів і ребер як невід’ємну частину процесу навчання. Було сформульовано три концепції для формування «сміттєвого забуття»: час простою, надійність і корисність завдяки чому мережа видаляє вузли та ребра. Така мережа базується на концепті «навчання без вчителя» і може працювати із штучними та реальними даними і, навіть, за раптових або повторюваних відхилень.