{"title":"A Survey on Threat Hunting in Enterprise Networks","authors":"Boubakr Nour;Makan Pourzandi;Mourad Debbabi","doi":"10.1109/COMST.2023.3299519","DOIUrl":null,"url":null,"abstract":"With the rapidly evolving technological landscape, the huge development of the Internet of Things, and the embracing of digital transformation, the world is witnessing an explosion in data generation and a rapid evolution of new applications that lead to new, wider, and more sophisticated threats that are complex and hard to be detected. Advanced persistence threats use continuous, clandestine, and sophisticated techniques to gain access to a system and remain hidden for a prolonged period of time, with potentially destructive consequences. Those stealthy attacks are often not detectable by advanced intrusion detection systems (e.g., LightBasin attack was detected in 2022 and has been active since 2016). Indeed, threat actors are able to quickly and intelligently alter their tactics to avoid being detected by security defense lines (e.g., prevention and detection mechanisms). In response to these evolving threats, organizations need to adopt new proactive defense approaches. Threat hunting is a proactive security line exercised to uncover stealthy attacks, malicious activities, and suspicious entities that could circumvent standard detection mechanisms. Additionally, threat hunting is an iterative approach to generate and revise threat hypotheses endeavoring to provide early attack detection in a proactive way. The proactiveness consists of testing and validating the initial hypothesis using various manual and automated tools/techniques with the objective of confirming/refuting the existence of an attack. This survey studies the threat hunting concept and provides a comprehensive review of the existing solutions for Enterprise networks. In particular, we provide a threat hunting taxonomy based on the used technique and a sub-classification based on the detailed approach. Furthermore, we discuss the existing standardization efforts. Finally, we provide a qualitative discussion on current advances and identify various research gaps and challenges that may be considered by the research community to design concrete and efficient threat hunting solutions.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"25 4","pages":"2299-2324"},"PeriodicalIF":34.4000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10216378/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
With the rapidly evolving technological landscape, the huge development of the Internet of Things, and the embracing of digital transformation, the world is witnessing an explosion in data generation and a rapid evolution of new applications that lead to new, wider, and more sophisticated threats that are complex and hard to be detected. Advanced persistence threats use continuous, clandestine, and sophisticated techniques to gain access to a system and remain hidden for a prolonged period of time, with potentially destructive consequences. Those stealthy attacks are often not detectable by advanced intrusion detection systems (e.g., LightBasin attack was detected in 2022 and has been active since 2016). Indeed, threat actors are able to quickly and intelligently alter their tactics to avoid being detected by security defense lines (e.g., prevention and detection mechanisms). In response to these evolving threats, organizations need to adopt new proactive defense approaches. Threat hunting is a proactive security line exercised to uncover stealthy attacks, malicious activities, and suspicious entities that could circumvent standard detection mechanisms. Additionally, threat hunting is an iterative approach to generate and revise threat hypotheses endeavoring to provide early attack detection in a proactive way. The proactiveness consists of testing and validating the initial hypothesis using various manual and automated tools/techniques with the objective of confirming/refuting the existence of an attack. This survey studies the threat hunting concept and provides a comprehensive review of the existing solutions for Enterprise networks. In particular, we provide a threat hunting taxonomy based on the used technique and a sub-classification based on the detailed approach. Furthermore, we discuss the existing standardization efforts. Finally, we provide a qualitative discussion on current advances and identify various research gaps and challenges that may be considered by the research community to design concrete and efficient threat hunting solutions.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.