Kilian Förster, Samuel Monteleone, Alberto Calatroni, D. Roggen, G. Tröster
{"title":"Incremental kNN Classifier Exploiting Correct-Error Teacher for Activity Recognition","authors":"Kilian Förster, Samuel Monteleone, Alberto Calatroni, D. Roggen, G. Tröster","doi":"10.1109/ICMLA.2010.72","DOIUrl":null,"url":null,"abstract":"Non-stationary data distributions are a challenge in activity recognition from body worn motion sensors. Classifier models have to be adapted online to maintain a high recognition performance. Typical approaches for online learning are either unsupervised and potentially unstable, or require ground truth information which may be expensive to obtain. As an alternative we propose a teacher signal that can be provided by the user in a minimally obtrusive way. It indicates if the predicted activity for a feature vector is correct or wrong. To exploit this information we propose a novel incremental online learning strategy to adapt a k-nearest-neighbor classifier from instances that are indicated to be correctly or wrongly classified. We characterize our approach on an artificial dataset with abrupt distribution change that simulates a new user of an activity recognition system. The adapted classifier reaches the same accuracy as a classifier trained specifically for the new data distribution. The learning based on the provided correct - error signal also results in a faster learning speed compared to online learning from ground truth. We validate our approach on a real world gesture recognition dataset. The adapted classifiers achieve an accuracy of 78.6% compared to the subject independent baseline of 68.3%.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
Non-stationary data distributions are a challenge in activity recognition from body worn motion sensors. Classifier models have to be adapted online to maintain a high recognition performance. Typical approaches for online learning are either unsupervised and potentially unstable, or require ground truth information which may be expensive to obtain. As an alternative we propose a teacher signal that can be provided by the user in a minimally obtrusive way. It indicates if the predicted activity for a feature vector is correct or wrong. To exploit this information we propose a novel incremental online learning strategy to adapt a k-nearest-neighbor classifier from instances that are indicated to be correctly or wrongly classified. We characterize our approach on an artificial dataset with abrupt distribution change that simulates a new user of an activity recognition system. The adapted classifier reaches the same accuracy as a classifier trained specifically for the new data distribution. The learning based on the provided correct - error signal also results in a faster learning speed compared to online learning from ground truth. We validate our approach on a real world gesture recognition dataset. The adapted classifiers achieve an accuracy of 78.6% compared to the subject independent baseline of 68.3%.