Concept of a causality-driven fault diagnosis system for cyber-physical production systems

Carl Willy Mehling, Sven Pieper, Steffen Ihlenfeldt
{"title":"Concept of a causality-driven fault diagnosis system for cyber-physical production systems","authors":"Carl Willy Mehling, Sven Pieper, Steffen Ihlenfeldt","doi":"10.1109/INDIN51400.2023.10218199","DOIUrl":null,"url":null,"abstract":"The automated production of individualized products in a cyber-physical production system (CPPS) requires the combined automation of software and machine components. While this leads to increased productivity, the complexity of the CPPS may result in long unplanned downtimes when faults occur, and no system model is available to guide the maintenance team. Knowledge-driven, data-driven or hybrid modeling are available approaches in the literature to obtaining a system model. While expert-driven and data-driven modeling face limited applicability to CPPS, hybrid models, combining both approaches can offer a solution. This paper proposes a causality-driven hybrid model for fault diagnosis in complex CPPS, represented in a causal knowledge graph (CKG). The CKG serves as a transparent system model for collaborative human-machine fault diagnosis. We provide a concept for the continuous hybrid learning of the CKG, a maturity model to classify the resulting CKG’s fault diagnosis capabilities, and the industrial setting inspiring the approach.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10218199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The automated production of individualized products in a cyber-physical production system (CPPS) requires the combined automation of software and machine components. While this leads to increased productivity, the complexity of the CPPS may result in long unplanned downtimes when faults occur, and no system model is available to guide the maintenance team. Knowledge-driven, data-driven or hybrid modeling are available approaches in the literature to obtaining a system model. While expert-driven and data-driven modeling face limited applicability to CPPS, hybrid models, combining both approaches can offer a solution. This paper proposes a causality-driven hybrid model for fault diagnosis in complex CPPS, represented in a causal knowledge graph (CKG). The CKG serves as a transparent system model for collaborative human-machine fault diagnosis. We provide a concept for the continuous hybrid learning of the CKG, a maturity model to classify the resulting CKG’s fault diagnosis capabilities, and the industrial setting inspiring the approach.
网络物理生产系统因果驱动故障诊断系统的概念
在网络物理生产系统(CPPS)中,个性化产品的自动化生产需要软件和机器组件的组合自动化。虽然这会提高生产力,但CPPS的复杂性可能会导致故障发生时长时间的计划外停机,并且没有可用的系统模型来指导维护团队。在文献中,知识驱动、数据驱动或混合建模是获得系统模型的可用方法。虽然专家驱动和数据驱动建模在CPPS中的适用性有限,但结合这两种方法的混合模型可以提供解决方案。提出了一种以因果知识图(CKG)表示的复杂CPPS故障诊断的因果驱动混合模型。CKG为人机协同故障诊断提供了一个透明的系统模型。我们为CKG的连续混合学习提供了一个概念,一个成熟度模型来分类所得到的CKG的故障诊断能力,以及启发该方法的工业环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信