View Invariant Appearance-Based Person Reidentification Using Fast Online Feature Selection and Score Level Fusion

M. Eisenbach, Alexander Kolarow, Konrad Schenk, Klaus Debes, H. Groß
{"title":"View Invariant Appearance-Based Person Reidentification Using Fast Online Feature Selection and Score Level Fusion","authors":"M. Eisenbach, Alexander Kolarow, Konrad Schenk, Klaus Debes, H. Groß","doi":"10.1109/AVSS.2012.81","DOIUrl":null,"url":null,"abstract":"Fast and robust person reidentification is an important task in multi-camera surveillance and automated access control. We present an efficient appearance-based algorithm, able to reidentify a person regardless of occlusions, distance to the camera, and changes in view and lighting. The use of fast online feature selection techniques enables us to perform reidentification in hyper-real-time for a multi-camera system, by taking only 10 seconds for evaluating 100 minutes of HD-video data. We demonstrate, that our approach surpasses current appearance-based state-of-the-art in reidentification quality and computational speed and sets a new reference in non-biometric reidentification.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Fast and robust person reidentification is an important task in multi-camera surveillance and automated access control. We present an efficient appearance-based algorithm, able to reidentify a person regardless of occlusions, distance to the camera, and changes in view and lighting. The use of fast online feature selection techniques enables us to perform reidentification in hyper-real-time for a multi-camera system, by taking only 10 seconds for evaluating 100 minutes of HD-video data. We demonstrate, that our approach surpasses current appearance-based state-of-the-art in reidentification quality and computational speed and sets a new reference in non-biometric reidentification.
基于快速在线特征选择和分数水平融合的基于视图不变外观的人物再识别
快速、鲁棒的人员再识别是多摄像头监控和自动化门禁中的重要任务。我们提出了一种高效的基于外观的算法,能够重新识别一个人,而不受遮挡、与相机的距离、视角和光照的变化的影响。快速在线特征选择技术的使用使我们能够对多摄像头系统进行超实时的重新识别,只需10秒即可评估100分钟的高清视频数据。我们证明,我们的方法在再识别质量和计算速度方面超越了当前基于外观的最先进技术,并为非生物特征再识别提供了新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信