Online Work Distribution to Clouds

Lan Wang
{"title":"Online Work Distribution to Clouds","authors":"Lan Wang","doi":"10.1109/MASCOTS.2016.64","DOIUrl":null,"url":null,"abstract":"The Cloud supports diverse workloads and simple schemes are needed to allocate jobs with satisfactory QoS and low overhead. This paper presents a further study on the potential of an online work distribution approach in adaptively distributing workloads under variable load conditions for optimizing the two contradictory criteria: reducing the energy consumption per job while maintaining the best possible job response time. For cloud systems spanning multiple geographical regions, this paper describes a smart distributed system which deploys a Task Allocation Platform (TAP) in each cloud and takes decisions to allocate tasks dynamically to the service that offers the best overall Quality of Service. Experiments are conducted in dynamic and heterogeneous environments at the global intercontinental level, both to collect data for decision making and to illustrate the effectiveness of our approach.","PeriodicalId":129389,"journal":{"name":"2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS.2016.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Cloud supports diverse workloads and simple schemes are needed to allocate jobs with satisfactory QoS and low overhead. This paper presents a further study on the potential of an online work distribution approach in adaptively distributing workloads under variable load conditions for optimizing the two contradictory criteria: reducing the energy consumption per job while maintaining the best possible job response time. For cloud systems spanning multiple geographical regions, this paper describes a smart distributed system which deploys a Task Allocation Platform (TAP) in each cloud and takes decisions to allocate tasks dynamically to the service that offers the best overall Quality of Service. Experiments are conducted in dynamic and heterogeneous environments at the global intercontinental level, both to collect data for decision making and to illustrate the effectiveness of our approach.
在线工作分发到云
云支持多种工作负载,需要简单的方案来分配具有令人满意的QoS和低开销的作业。本文进一步研究了在线工作分配方法在可变负载条件下自适应分配工作负载的潜力,以优化两个相互矛盾的标准:减少每个工作的能耗,同时保持最佳的工作响应时间。对于跨越多个地理区域的云系统,本文描述了一个智能分布式系统,该系统在每个云中部署一个任务分配平台(TAP),并做出决策,将任务动态分配给提供最佳整体服务质量的服务。实验在全球洲际层面的动态和异构环境中进行,既为决策收集数据,又说明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信