Intelligent fault diagnosis of rolling bearing based on a deep transfer learning network

Zhenghong Wu, Hongkai Jiang, Sicheng Zhang, Xin Wang, Haidong Shao, Haoxuan Dou
{"title":"Intelligent fault diagnosis of rolling bearing based on a deep transfer learning network","authors":"Zhenghong Wu, Hongkai Jiang, Sicheng Zhang, Xin Wang, Haidong Shao, Haoxuan Dou","doi":"10.1109/ICPHM57936.2023.10194043","DOIUrl":null,"url":null,"abstract":"Rolling bearing of rotating machinery's key component will inevitably fail due to the complex and changeable operating environment such as variable speed, large disturbance, high and low temperature. It is quite challenging to obtain abundant labeled bearing fault samples because the rotating machinery is typically in a healthy and operational state. For addressing the issue, an intelligent fault diagnosis method based on a deep transfer learning network is proposed. First, a bidirectional gated recurrent unit (Bi-GRU) network is utilized to mine the latent relationship between labeled source domain samples and few labeled target domain samples, the parameters of Bi-GRU are trained to obtain the instance transfer bidirectional gated recurrent unit model (ITBi-GRU), and auxiliary samples are generated based on the ITBi-GRU. Second, as a feature transfer learning method, joint distribution adaptation is used to simultaneously decrease the distribution discrepancies between the generated auxiliary samples and the unlabeled target domain samples. Finally, extensive experiments are employed to evaluate the effectiveness of the proposed method in the case of scarce labeled samples.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10194043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rolling bearing of rotating machinery's key component will inevitably fail due to the complex and changeable operating environment such as variable speed, large disturbance, high and low temperature. It is quite challenging to obtain abundant labeled bearing fault samples because the rotating machinery is typically in a healthy and operational state. For addressing the issue, an intelligent fault diagnosis method based on a deep transfer learning network is proposed. First, a bidirectional gated recurrent unit (Bi-GRU) network is utilized to mine the latent relationship between labeled source domain samples and few labeled target domain samples, the parameters of Bi-GRU are trained to obtain the instance transfer bidirectional gated recurrent unit model (ITBi-GRU), and auxiliary samples are generated based on the ITBi-GRU. Second, as a feature transfer learning method, joint distribution adaptation is used to simultaneously decrease the distribution discrepancies between the generated auxiliary samples and the unlabeled target domain samples. Finally, extensive experiments are employed to evaluate the effectiveness of the proposed method in the case of scarce labeled samples.
基于深度迁移学习网络的滚动轴承故障智能诊断
滚动轴承作为旋转机械的关键部件,在变速、大扰动、高低温等复杂多变的运行环境中不可避免地会发生故障。由于旋转机械通常处于健康运行状态,因此获得丰富的标记轴承故障样本是非常具有挑战性的。针对这一问题,提出了一种基于深度迁移学习网络的智能故障诊断方法。首先,利用双向门控循环单元(Bi-GRU)网络挖掘标记的源域样本与少量标记的目标域样本之间的潜在关系,对Bi-GRU的参数进行训练,得到实例转移双向门控循环单元模型(ITBi-GRU),并在此基础上生成辅助样本。其次,作为一种特征迁移学习方法,采用联合分布自适应的方法,同时减小生成的辅助样本与未标记的目标域样本之间的分布差异。最后,采用大量的实验来评估所提出的方法在稀缺标记样本情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信