Modeling and Estimation of Enhanced Self Correcting Model Parameters of Lithium Ion Cell

P. Aruna, V. Vasan Prabhu, V. Krishnakumar
{"title":"Modeling and Estimation of Enhanced Self Correcting Model Parameters of Lithium Ion Cell","authors":"P. Aruna, V. Vasan Prabhu, V. Krishnakumar","doi":"10.1109/IConSCEPT57958.2023.10170474","DOIUrl":null,"url":null,"abstract":"In this paper, modeling and estimating the parameters of the Enhanced Self-Correcting (ESC) model of a lithium-ion cell is presented so that the behaviour of the cell can be better understood with high fidelity. When the lithium-ion cell is used as battery pack in Electric Vehicle (EV), it is critical to have reliable temperaturedependent parameters to forecast aging and to determine how the cell responds to different operating scenarios of EV. This study is significant because it takes into account the voltage hysteresis effect, which is necessary for precise estimation of State of Charge (SOC) and State of Health (SOH) in order to forecast EV range. Open circuit voltage testing and dynamic testing at various temperatures are used in this paper to determine the parameters of the ESC model. The simulations are done using MATLAB and the results are obtained with high accuracy.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, modeling and estimating the parameters of the Enhanced Self-Correcting (ESC) model of a lithium-ion cell is presented so that the behaviour of the cell can be better understood with high fidelity. When the lithium-ion cell is used as battery pack in Electric Vehicle (EV), it is critical to have reliable temperaturedependent parameters to forecast aging and to determine how the cell responds to different operating scenarios of EV. This study is significant because it takes into account the voltage hysteresis effect, which is necessary for precise estimation of State of Charge (SOC) and State of Health (SOH) in order to forecast EV range. Open circuit voltage testing and dynamic testing at various temperatures are used in this paper to determine the parameters of the ESC model. The simulations are done using MATLAB and the results are obtained with high accuracy.
锂离子电池增强自校正模型参数的建模与估计
本文介绍了锂离子电池的增强自校正(Enhanced Self-Correcting, ESC)模型的建模和参数估计,从而可以更好地了解电池的行为和高保真度。当锂离子电池作为电动汽车电池组使用时,关键是要有可靠的温度相关参数来预测电池的老化,并确定电池对电动汽车不同运行场景的响应。该研究的意义在于考虑了电压滞后效应,这是准确估计充电状态(SOC)和健康状态(SOH)以预测EV范围所必需的。本文采用开路电压测试和不同温度下的动态测试来确定ESC模型的参数。利用MATLAB进行了仿真,得到了精度较高的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信