Short term power demand prediction using stochastic gradient boosting

A. B. Nassif
{"title":"Short term power demand prediction using stochastic gradient boosting","authors":"A. B. Nassif","doi":"10.1109/icedsa.2016.7818510","DOIUrl":null,"url":null,"abstract":"Power prediction demand is vital in power system and delivery engineering fields. By efficiently predicting the power demand, we can forecast the total energy to be consumed in a certain city or district. Thus, exact resources required to produce the demand power can be allocated. In this paper, a Stochastic Gradient Boosting (aka Treeboost) model is used to predict the short term power demand for the Emirate of Sharjah in the United Arab Emirates (UAE). Results show that the proposed model gives promising results in comparison to the model used by Sharjah Electricity and Water Authority (SEWA).","PeriodicalId":247318,"journal":{"name":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icedsa.2016.7818510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Power prediction demand is vital in power system and delivery engineering fields. By efficiently predicting the power demand, we can forecast the total energy to be consumed in a certain city or district. Thus, exact resources required to produce the demand power can be allocated. In this paper, a Stochastic Gradient Boosting (aka Treeboost) model is used to predict the short term power demand for the Emirate of Sharjah in the United Arab Emirates (UAE). Results show that the proposed model gives promising results in comparison to the model used by Sharjah Electricity and Water Authority (SEWA).
基于随机梯度增强的短期电力需求预测
功率预测需求在电力系统和输电工程领域具有重要意义。通过对电力需求的有效预测,可以预测某一城市或地区的总能耗。因此,可以分配生产所需电力所需的确切资源。本文采用随机梯度增强模型(又名Treeboost)对阿联酋沙迦酋长国的短期电力需求进行预测。结果表明,与沙迦电力和水务局(SEWA)使用的模型相比,所提出的模型具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信