Hybrid Deep Transfer Learning Framework for Stroke Risk Prediction

Reshma S. V, Gini R
{"title":"Hybrid Deep Transfer Learning Framework for Stroke Risk Prediction","authors":"Reshma S. V, Gini R","doi":"10.59544/fpvt8168/ngcesi23p16","DOIUrl":null,"url":null,"abstract":"Stroke has become a leading cause of death and long-term disability in the world with no effective treatment. Deep learning-based approaches have the potential to outperform existing stroke risk prediction models. Due to the strict privacy protection policy in health-care systems, stroke data is usually distributed among different hospitals in small pieces. Transfer learning can solve small data issue by exploiting the knowledge of a correlated domain, especially when multiple source of data are available. In this work, we propose a novel Hybrid Deep Transfer Learning-based Stroke Risk Prediction scheme.","PeriodicalId":315694,"journal":{"name":"The International Conference on scientific innovations in Science, Technology, and Management","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on scientific innovations in Science, Technology, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59544/fpvt8168/ngcesi23p16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke has become a leading cause of death and long-term disability in the world with no effective treatment. Deep learning-based approaches have the potential to outperform existing stroke risk prediction models. Due to the strict privacy protection policy in health-care systems, stroke data is usually distributed among different hospitals in small pieces. Transfer learning can solve small data issue by exploiting the knowledge of a correlated domain, especially when multiple source of data are available. In this work, we propose a novel Hybrid Deep Transfer Learning-based Stroke Risk Prediction scheme.
脑卒中风险预测的混合深度迁移学习框架
在没有有效治疗的情况下,中风已成为世界上导致死亡和长期残疾的主要原因。基于深度学习的方法有可能超越现有的中风风险预测模型。由于卫生保健系统严格的隐私保护政策,中风数据通常以小块的形式分布在不同的医院。迁移学习可以通过利用相关领域的知识来解决小数据问题,特别是在多个数据源可用的情况下。在这项工作中,我们提出了一种新的基于混合深度迁移学习的脑卒中风险预测方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信