Integration of Dynamic Multi-Atlas and Deep Learning Techniques to Improve Segmentation of the Prostate in MR Images

H. Moradi, A. H. Foruzan
{"title":"Integration of Dynamic Multi-Atlas and Deep Learning Techniques to Improve Segmentation of the Prostate in MR Images","authors":"H. Moradi, A. H. Foruzan","doi":"10.1142/S0219467822500310","DOIUrl":null,"url":null,"abstract":"Accurate delineation of the prostate in MR images is an essential step for treatment planning and volume estimation of the organ. Prostate segmentation is a challenging task due to its variable size and shape. Moreover, neighboring tissues have a low-contrast with the prostate. We propose a robust and precise automatic algorithm to define the prostate’s boundaries in MR images in this paper. First, we find the prostate’s ROI by a deep neural network and decrease the input image’s size. Next, a dynamic multi-atlas-based approach obtains the initial segmentation of the prostate. A watershed algorithm improves the initial segmentation at the next stage. Finally, an SSM algorithm keeps the result in the domain of allowable prostate shapes. The quantitative evaluation of 74 prostate volumes demonstrated that the proposed method yields a mean Dice coefficient of [Formula: see text]. In comparison with recent researches, our algorithm is robust against shape and size variations.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219467822500310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate delineation of the prostate in MR images is an essential step for treatment planning and volume estimation of the organ. Prostate segmentation is a challenging task due to its variable size and shape. Moreover, neighboring tissues have a low-contrast with the prostate. We propose a robust and precise automatic algorithm to define the prostate’s boundaries in MR images in this paper. First, we find the prostate’s ROI by a deep neural network and decrease the input image’s size. Next, a dynamic multi-atlas-based approach obtains the initial segmentation of the prostate. A watershed algorithm improves the initial segmentation at the next stage. Finally, an SSM algorithm keeps the result in the domain of allowable prostate shapes. The quantitative evaluation of 74 prostate volumes demonstrated that the proposed method yields a mean Dice coefficient of [Formula: see text]. In comparison with recent researches, our algorithm is robust against shape and size variations.
结合动态多图谱和深度学习技术改进磁共振图像中前列腺的分割
在磁共振图像中准确描绘前列腺是治疗计划和器官体积估计的重要步骤。前列腺分割是一项具有挑战性的任务,因为它的大小和形状是可变的。此外,邻近组织与前列腺的对比度较低。本文提出了一种鲁棒、精确的前列腺边界自动定义算法。首先,我们利用深度神经网络找到前列腺的ROI,并减小输入图像的大小。其次,基于动态多图谱的方法获得前列腺的初始分割。分水岭算法改进了下一阶段的初始分割。最后,SSM算法将结果保持在允许的前列腺形状范围内。对74个前列腺体积的定量评估表明,该方法的平均Dice系数为[公式:见文本]。与目前的研究结果相比,该算法对形状和尺寸的变化具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信