{"title":"Learning to price vehicle service with unknown demand","authors":"Haoran Yu, Ermin Wei, R. Berry","doi":"10.1145/3397166.3409129","DOIUrl":null,"url":null,"abstract":"It can be profitable for vehicle service providers to set service prices based on users' travel demand on different origin-destination pairs. Prior studies on the spatial pricing of vehicle service rely on the assumption that providers know users' demand. In this paper, we study a monopolistic provider who initially does not know users' demand and needs to learn it over time by observing the users' responses to the service prices. We design a pricing and vehicle supply policy, considering the tradeoff between exploration (i.e., learning the demand) and exploitation (i.e., maximizing the provider's short-term payoff). Considering that the provider needs to ensure the vehicle flow balance at each location, its pricing and supply decisions for different origin-destination pairs are tightly coupled. This makes it challenging to theoretically analyze the performance of our policy. We analyze the gap between the provider's expected time-average payoffs under our policy and a clairvoyant policy, which makes decisions based on complete information of the demand. We prove that after running our policy for D days, the loss in the expected time-average payoff can be at most O((ln D)1/2D−1/4), which decays to zero as D approaches infinity.","PeriodicalId":122577,"journal":{"name":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397166.3409129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
It can be profitable for vehicle service providers to set service prices based on users' travel demand on different origin-destination pairs. Prior studies on the spatial pricing of vehicle service rely on the assumption that providers know users' demand. In this paper, we study a monopolistic provider who initially does not know users' demand and needs to learn it over time by observing the users' responses to the service prices. We design a pricing and vehicle supply policy, considering the tradeoff between exploration (i.e., learning the demand) and exploitation (i.e., maximizing the provider's short-term payoff). Considering that the provider needs to ensure the vehicle flow balance at each location, its pricing and supply decisions for different origin-destination pairs are tightly coupled. This makes it challenging to theoretically analyze the performance of our policy. We analyze the gap between the provider's expected time-average payoffs under our policy and a clairvoyant policy, which makes decisions based on complete information of the demand. We prove that after running our policy for D days, the loss in the expected time-average payoff can be at most O((ln D)1/2D−1/4), which decays to zero as D approaches infinity.