Tracking Synchronization of Coupled Non-identical Neural Networks Via Iterative Learning Control

Jian Yong, Junhong Zhao, Ting Liu, Ting Lei, W. Deng, Peng Liu
{"title":"Tracking Synchronization of Coupled Non-identical Neural Networks Via Iterative Learning Control","authors":"Jian Yong, Junhong Zhao, Ting Liu, Ting Lei, W. Deng, Peng Liu","doi":"10.1109/ICIST55546.2022.9926852","DOIUrl":null,"url":null,"abstract":"This article focuses on the tracking synchronization of the coupled non-identical neural networks. A kind of D-type iterative learning control (ILC) is proposed and the control input of each agent is updated iteratively such that tracking synchronization can be achieved under a repetitive environment. In addition, by virtue of the contraction mapping principle, some sufficient criteria for guaranteeing the tracking synchronization are established under the structurally fixed signed digraph. Finally, a numerical example is provided to demonstrate the viability of the theoretical results.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on the tracking synchronization of the coupled non-identical neural networks. A kind of D-type iterative learning control (ILC) is proposed and the control input of each agent is updated iteratively such that tracking synchronization can be achieved under a repetitive environment. In addition, by virtue of the contraction mapping principle, some sufficient criteria for guaranteeing the tracking synchronization are established under the structurally fixed signed digraph. Finally, a numerical example is provided to demonstrate the viability of the theoretical results.
基于迭代学习控制的耦合非同构神经网络跟踪同步
本文主要研究耦合非同构神经网络的跟踪同步问题。提出了一种d型迭代学习控制(ILC),迭代更新各智能体的控制输入,从而在重复环境下实现跟踪同步。此外,利用收缩映射原理,在结构固定的有向图下,建立了保证跟踪同步的充分准则。最后,通过数值算例验证了理论结果的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信