Frieze varieties are invariant under Coxeter mutation

Kiyoshi Igusa, R. Schiffler
{"title":"Frieze varieties are invariant under Coxeter\n mutation","authors":"Kiyoshi Igusa, R. Schiffler","doi":"10.1090/CONM/761/15310","DOIUrl":null,"url":null,"abstract":"We define a generalized version of the frieze variety introduced by Lee, Li, Mills, Seceleanu and the second author. The generalized frieze variety is an algebraic variety determined by an acyclic quiver and a generic specialization of cluster variables in the cluster algebra for this quiver. The original frieze variety is obtained when this specialization is (1, . . . , 1). The main result is that a generalized frieze variety is determined by any generic element of any component of that variety. We also show that the \"Coxeter mutation\" cyclically permutes these components. In particular, this shows that the frieze variety is invariant under the Coxeter mutation at a generic point. The paper contains many examples which are generated using a new technique which we call an invariant Laurent polynomial. We show that a symmetry of a mutation of a quiver gives such an invariant rational function.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/761/15310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We define a generalized version of the frieze variety introduced by Lee, Li, Mills, Seceleanu and the second author. The generalized frieze variety is an algebraic variety determined by an acyclic quiver and a generic specialization of cluster variables in the cluster algebra for this quiver. The original frieze variety is obtained when this specialization is (1, . . . , 1). The main result is that a generalized frieze variety is determined by any generic element of any component of that variety. We also show that the "Coxeter mutation" cyclically permutes these components. In particular, this shows that the frieze variety is invariant under the Coxeter mutation at a generic point. The paper contains many examples which are generated using a new technique which we call an invariant Laurent polynomial. We show that a symmetry of a mutation of a quiver gives such an invariant rational function.
Frieze品种在Coxeter突变下是不变性的
我们定义了由Lee, Li, Mills, Seceleanu和第二作者引入的frieze品种的广义版本。广义frieze变种是由一个无环颤振和该颤振的簇代数中簇变量的一般特化所决定的代数变种。当这种专门化为(1,…)时,获得原始的横条品种。(1).主要结果是,一个广义frieze品种是由该品种的任何成分的任何一般元素决定的。我们还表明,“考克斯特突变”循环排列这些成分。特别地,这表明在一般点的Coxeter突变下,frieze变异是不变的。本文包含了许多使用我们称之为不变洛朗多项式的新技术生成的例子。我们证明了一个颤振突变的对称给出了这样一个不变有理函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信