On the Exponential Diophantine Equation ( ) ( ) x y p p z + + + = 2 2 5 6 when p p, + 2 and 5 6 p+ are Primes

S. Thongnak, T. Kaewong, W. Chuayjan
{"title":"On the Exponential Diophantine Equation ( ) ( ) x y p p z + + + = 2 2 5 6 when p p, + 2 and 5 6 p+ are Primes","authors":"S. Thongnak, T. Kaewong, W. Chuayjan","doi":"10.22457/apam.v23n2a08827","DOIUrl":null,"url":null,"abstract":"In this work, we prove that the exponential Diophantine equation ( ) ( ) 2 2 5 6 x y p p z + + + = has no solution when p p, 2 + and 5 6 p + are primes, and x y z , , are non-negative integers.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v23n2a08827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we prove that the exponential Diophantine equation ( ) ( ) 2 2 5 6 x y p p z + + + = has no solution when p p, 2 + and 5 6 p + are primes, and x y z , , are non-negative integers.
关于指数丢番图方程()()x y p p z + + = 2 2 5 6当p p, + 2和5 6 p+是素数
本文证明了指数丢芬图方程()()2 2 5 6 x y p p z + + =在p p, 2 +和5 6 p +为素数,x y z,,为非负整数时无解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信