S. Ferdous, P. García, Mohammad Abdul Moin Oninda, M. Hoque
{"title":"MTPA and Field Weakening Control of Synchronous Reluctance motor","authors":"S. Ferdous, P. García, Mohammad Abdul Moin Oninda, M. Hoque","doi":"10.1109/ICECE.2016.7853991","DOIUrl":null,"url":null,"abstract":"An improved algorithm for MTPA (Maximum Torque Per Ampere) and Field Weakening operation which is suitable for implementation with Field Oriented Control, has been proposed for the Synchronous Reluctance motor (SynRel) for high dynamic performance. The proposed method overcomes the problem of excessive current flow into the machine while generating the d-axis and q-axis current commands independently. At the same time to operate the inverter in the linear modulation region (0≤m≤1) to minimize the output torque ripple. The proposed method helps to attain MTPA operation below the base speed to operate with the rated load and a fast speed response in Field Weakening mode. The validity and efficacy of the proposed algorithm is verified by simulation in MATLAB and SIMULINK.","PeriodicalId":122930,"journal":{"name":"2016 9th International Conference on Electrical and Computer Engineering (ICECE)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Conference on Electrical and Computer Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2016.7853991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
An improved algorithm for MTPA (Maximum Torque Per Ampere) and Field Weakening operation which is suitable for implementation with Field Oriented Control, has been proposed for the Synchronous Reluctance motor (SynRel) for high dynamic performance. The proposed method overcomes the problem of excessive current flow into the machine while generating the d-axis and q-axis current commands independently. At the same time to operate the inverter in the linear modulation region (0≤m≤1) to minimize the output torque ripple. The proposed method helps to attain MTPA operation below the base speed to operate with the rated load and a fast speed response in Field Weakening mode. The validity and efficacy of the proposed algorithm is verified by simulation in MATLAB and SIMULINK.