Automated Left Ventricle Posterior Wall Segmentation Using Kohonen Self-Organizing Map

Salety Ferreira Baracho, V. V. D. Melo, R. C. Coelho
{"title":"Automated Left Ventricle Posterior Wall Segmentation Using Kohonen Self-Organizing Map","authors":"Salety Ferreira Baracho, V. V. D. Melo, R. C. Coelho","doi":"10.1109/BRACIS.2016.088","DOIUrl":null,"url":null,"abstract":"Image segmentation of left ventricle using long-axis view of the echocardiogram is important to assist the operator in the extraction of functional parameters. The correct obtaining of this parameter can help an early diagnosis of such disease and is welcome to the medical community. However, it is not such an easy task due to the inherent equipment operator bias and the inter-and intra-observer variability. To aid in such issue, in this paper we present an automatic segmentation of the left ventricle posterior wall in echocardiographic images. Our approach employs the Self-Organizing Map to cluster the image's pixels and some image processing methods to perform the final segmentation and calculation of the left ventricle thickness. Results show that our approach, besides fully automatic, is more accurate than similar result from the literature obtained with semi-automatic methods.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"758 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Image segmentation of left ventricle using long-axis view of the echocardiogram is important to assist the operator in the extraction of functional parameters. The correct obtaining of this parameter can help an early diagnosis of such disease and is welcome to the medical community. However, it is not such an easy task due to the inherent equipment operator bias and the inter-and intra-observer variability. To aid in such issue, in this paper we present an automatic segmentation of the left ventricle posterior wall in echocardiographic images. Our approach employs the Self-Organizing Map to cluster the image's pixels and some image processing methods to perform the final segmentation and calculation of the left ventricle thickness. Results show that our approach, besides fully automatic, is more accurate than similar result from the literature obtained with semi-automatic methods.
基于Kohonen自组织图的左心室后壁自动分割
超声心动图长轴图像分割是辅助超声心动图操作者提取左心室功能参数的重要手段。该参数的正确获取有助于对此类疾病的早期诊断,受到医学界的欢迎。然而,由于固有的设备操作员偏差和观察者之间和内部的可变性,这并不是一件容易的事情。为了帮助解决这一问题,在本文中,我们提出了超声心动图图像中左心室后壁的自动分割。该方法采用自组织映射(Self-Organizing Map)对图像像素进行聚类,并采用一些图像处理方法对左心室厚度进行最终分割和计算。结果表明,该方法除全自动外,还比文献中半自动方法得到的结果更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信