Classification of Room Impulse Responses using Kohonen Neural Network

M. Pavlović, G. Zajic, Marija Zajeganović, D. Ristić, I. Reljin, M. Mijic
{"title":"Classification of Room Impulse Responses using Kohonen Neural Network","authors":"M. Pavlović, G. Zajic, Marija Zajeganović, D. Ristić, I. Reljin, M. Mijic","doi":"10.1109/NEUREL.2018.8587009","DOIUrl":null,"url":null,"abstract":"In this paper a method for classifying acoustic room impulse responses is analyzed. Impulse responses represent basic source of information in room acoustics. The algorithm performs clustering using Kohonen neural network. The calculated multifractal parameters represent the input data in the Kohonen neural network. Clusters of impulse responses with similar acoustic characteristics are found. The experimental results verify the usability of the proposed algorithm.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper a method for classifying acoustic room impulse responses is analyzed. Impulse responses represent basic source of information in room acoustics. The algorithm performs clustering using Kohonen neural network. The calculated multifractal parameters represent the input data in the Kohonen neural network. Clusters of impulse responses with similar acoustic characteristics are found. The experimental results verify the usability of the proposed algorithm.
基于Kohonen神经网络的房间脉冲响应分类
本文分析了声室脉冲响应的分类方法。在室内声学中,脉冲响应是信息的基本来源。该算法采用Kohonen神经网络进行聚类。计算得到的多重分形参数代表Kohonen神经网络的输入数据。发现了具有相似声学特性的脉冲响应簇。实验结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信