Complexity reduction in low-delay farrow-structure-based variable fractional delay FIR filters utilizing linear-phase subfilters

A. Eghbali, H. Johansson
{"title":"Complexity reduction in low-delay farrow-structure-based variable fractional delay FIR filters utilizing linear-phase subfilters","authors":"A. Eghbali, H. Johansson","doi":"10.1109/ECCTD.2011.6043300","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to design low-delay fractional delay (FD) filters, using the Farrow structure. The proposed method employs both linear-phase and nonlinear-phase finite-length impulse response (FIR) subfilters. This is in contrast to conventional methods that utilize only nonlinear-phase FIR subfilters. Two design cases are considered. The first case uses nonlinear-phase FIR filters in all branches of the Farrow structure. The second case uses linear-phase FIR filters in every second branch. These branches have milder restrictions on the approximation error. Therefore, even with a reduced order, for these linear-phase FIR filters, the approximation error is not affected. However, the arithmetic complexity, in terms of the number of distinct multiplications, is reduced by an average of 30%. Design examples illustrate the method.","PeriodicalId":126960,"journal":{"name":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2011.6043300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a method to design low-delay fractional delay (FD) filters, using the Farrow structure. The proposed method employs both linear-phase and nonlinear-phase finite-length impulse response (FIR) subfilters. This is in contrast to conventional methods that utilize only nonlinear-phase FIR subfilters. Two design cases are considered. The first case uses nonlinear-phase FIR filters in all branches of the Farrow structure. The second case uses linear-phase FIR filters in every second branch. These branches have milder restrictions on the approximation error. Therefore, even with a reduced order, for these linear-phase FIR filters, the approximation error is not affected. However, the arithmetic complexity, in terms of the number of distinct multiplications, is reduced by an average of 30%. Design examples illustrate the method.
利用线性相位子滤波器降低低延迟farlow结构可变分数延迟FIR滤波器的复杂度
本文提出了一种利用Farrow结构设计低延迟分数延迟(FD)滤波器的方法。该方法采用线性相位和非线性相位有限长脉冲响应子滤波器。这与仅利用非线性相位FIR子滤波器的传统方法形成对比。考虑了两个设计案例。第一种情况是在Farrow结构的所有分支中使用非线性相位FIR滤波器。第二种情况是在每个分支中使用线性相位FIR滤波器。这些分支对近似误差的限制较轻。因此,即使降低阶数,对于这些线性相位FIR滤波器,近似误差也不受影响。然而,就不同乘法的数量而言,算术复杂度平均降低了30%。设计实例说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信