M. Aly, E. A. Mohamed, H. Ramadan, A. Elmelegi, S. Said, E. Ahmed, A. Shawky, José Raúl Rodríguez Rodríguez
{"title":"Optimized LFC Design for Future Low-Inertia Power Electronics Based Modern Power Grids","authors":"M. Aly, E. A. Mohamed, H. Ramadan, A. Elmelegi, S. Said, E. Ahmed, A. Shawky, José Raúl Rodríguez Rodríguez","doi":"10.1109/CPERE56564.2023.10119568","DOIUrl":null,"url":null,"abstract":"Numerous renewable energy source (RES) plants have lately been added to modern power grids. Power electronics converter systems (PECS) have become key components in the structures of these RESs for grid integration. However, PECS-based RESs result in decreased power system inertia, which reduces as penetration increases. Load frequency controllers (LFCs) have enhanced the performance of current power grids based on PECS. As a result, this study provides an optimal LFC structure based on merging characteristics from standard Tilt-Integral-Derivative (TID) and fractional order-based proportional-integral-derivative (FOPID) controllers in a novel combined FOTID LFC technique. The recently announced slime mould algorithm (SMA) was used to optimize the parameters of the proposed LFC. The results of a two-area RES-based power grid simulation are utilized to validate the proposed TFOID controller and the SMA-based design optimization.","PeriodicalId":169048,"journal":{"name":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPERE56564.2023.10119568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous renewable energy source (RES) plants have lately been added to modern power grids. Power electronics converter systems (PECS) have become key components in the structures of these RESs for grid integration. However, PECS-based RESs result in decreased power system inertia, which reduces as penetration increases. Load frequency controllers (LFCs) have enhanced the performance of current power grids based on PECS. As a result, this study provides an optimal LFC structure based on merging characteristics from standard Tilt-Integral-Derivative (TID) and fractional order-based proportional-integral-derivative (FOPID) controllers in a novel combined FOTID LFC technique. The recently announced slime mould algorithm (SMA) was used to optimize the parameters of the proposed LFC. The results of a two-area RES-based power grid simulation are utilized to validate the proposed TFOID controller and the SMA-based design optimization.