Selection of Core Words from Textual Patent Data with DEA based on Citation

Shigeaki Onoda, K. Okuhara
{"title":"Selection of Core Words from Textual Patent Data with DEA based on Citation","authors":"Shigeaki Onoda, K. Okuhara","doi":"10.1109/ICAIIC.2019.8668999","DOIUrl":null,"url":null,"abstract":"The web includes enormous data such as patents. The purpose of this research finds the rule of textual patent data and creates new model. Hence, we suggest new weighted method using DEA to handle unstructured data like patent. Our proposed method is advantageous because this considers the value of the patent compared with TF-IDF and other weighted methods. Using suggested method, we probe new text-mining in the field of patent.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8668999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The web includes enormous data such as patents. The purpose of this research finds the rule of textual patent data and creates new model. Hence, we suggest new weighted method using DEA to handle unstructured data like patent. Our proposed method is advantageous because this considers the value of the patent compared with TF-IDF and other weighted methods. Using suggested method, we probe new text-mining in the field of patent.
基于引文的DEA从专利文本数据中选择核心词
网络包含大量的数据,比如专利。本研究的目的在于发现专利文本数据的规律,建立新的模型。因此,我们提出了一种新的加权DEA方法来处理专利等非结构化数据。我们提出的方法是有利的,因为与TF-IDF和其他加权方法相比,它考虑了专利的价值。利用本文提出的方法,对专利领域的文本挖掘进行了探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信