Comparison of autoencoder and Principal Component Analysis followed by neural network for e-learning using handwritten recognition

Jasem Almotiri, K. Elleithy, Abdelrahman Elleithy
{"title":"Comparison of autoencoder and Principal Component Analysis followed by neural network for e-learning using handwritten recognition","authors":"Jasem Almotiri, K. Elleithy, Abdelrahman Elleithy","doi":"10.1109/LISAT.2017.8001963","DOIUrl":null,"url":null,"abstract":"This paper presents two different implementations for recognition of handwritten numerals using a high performance autoencoder and Principal Component Analysis (PCA) by making use of neural networks. Different from other approaches, the non-linear mapping capability of neural networks is used extensively here. The implementation involves the deployment of a neural network, and the use of an auto encoder and PCA while carrying out the compression and classification of data. The performance of the system was analyzed, and an accuracy of 97.2% for Principal Component Analysis, and 98.1% accuracy for the autoencoder, was recorded in detection of numerals written by school children.","PeriodicalId":370931,"journal":{"name":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISAT.2017.8001963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

This paper presents two different implementations for recognition of handwritten numerals using a high performance autoencoder and Principal Component Analysis (PCA) by making use of neural networks. Different from other approaches, the non-linear mapping capability of neural networks is used extensively here. The implementation involves the deployment of a neural network, and the use of an auto encoder and PCA while carrying out the compression and classification of data. The performance of the system was analyzed, and an accuracy of 97.2% for Principal Component Analysis, and 98.1% accuracy for the autoencoder, was recorded in detection of numerals written by school children.
自编码器与主成分分析后神经网络用于手写识别电子学习的比较
本文介绍了两种不同的手写体数字识别实现,一种是采用高性能自编码器,另一种是利用神经网络进行主成分分析。与其他方法不同的是,神经网络的非线性映射能力在这里得到了广泛的应用。该实现涉及到神经网络的部署,以及在执行数据压缩和分类时使用自动编码器和PCA。对系统的性能进行了分析,主成分分析的准确率为97.2%,自动编码器的准确率为98.1%,用于小学生书写的数字检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信