Practical issues for configuring carbon nanotube composite materials for computation

K. Clegg, J. Miller, M. K. Massey, M. Petty
{"title":"Practical issues for configuring carbon nanotube composite materials for computation","authors":"K. Clegg, J. Miller, M. K. Massey, M. Petty","doi":"10.1109/ICES.2014.7008723","DOIUrl":null,"url":null,"abstract":"We report our experiences of attempting to configure a single-walled carbon nanotube (SWCNT) / polymer composite material deposited on a micro-electrode array to carry out two classification tasks based on data sets from University of California, Irvine (UCI)[1]. The tasks are attempted using hybrid “in materio” computation: a technique that uses machine search to configure materials for computation. The SWCNT / polymer composite materials are configured using static voltages so that voltage output readings from the material predict which class the data samples belong to. Our initial results suggest that the configured SWCNT materials are able to achieve good levels of predictive accuracy. However, we are in no doubt that the time and effort required to configure the samples could be improved. The parameter space when dealing with physical systems is large, often unknown and slow to test, making progress in this field difficult. Our purpose is not demonstrate the accuracy of configured samples to perform a certain classification, but to showcase the potential of configuring very small material samples with analogue voltages to solve stand alone computation tasks. Such SWCNT devices would be cheap to manufacture and require only low precision assembly, yet if correctly configured would be able to function as multipurpose, single task computational devices.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Evolvable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICES.2014.7008723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We report our experiences of attempting to configure a single-walled carbon nanotube (SWCNT) / polymer composite material deposited on a micro-electrode array to carry out two classification tasks based on data sets from University of California, Irvine (UCI)[1]. The tasks are attempted using hybrid “in materio” computation: a technique that uses machine search to configure materials for computation. The SWCNT / polymer composite materials are configured using static voltages so that voltage output readings from the material predict which class the data samples belong to. Our initial results suggest that the configured SWCNT materials are able to achieve good levels of predictive accuracy. However, we are in no doubt that the time and effort required to configure the samples could be improved. The parameter space when dealing with physical systems is large, often unknown and slow to test, making progress in this field difficult. Our purpose is not demonstrate the accuracy of configured samples to perform a certain classification, but to showcase the potential of configuring very small material samples with analogue voltages to solve stand alone computation tasks. Such SWCNT devices would be cheap to manufacture and require only low precision assembly, yet if correctly configured would be able to function as multipurpose, single task computational devices.
碳纳米管复合材料配置计算的实际问题
我们报告了我们尝试配置沉积在微电极阵列上的单壁碳纳米管(SWCNT) /聚合物复合材料的经验,以执行基于加州大学欧文分校(UCI)[1]数据集的两个分类任务。这些任务尝试使用混合“材料”计算:一种使用机器搜索来配置计算材料的技术。swcnts /聚合物复合材料使用静态电压配置,因此材料的电压输出读数可以预测数据样本属于哪一类。我们的初步结果表明,配置的swcnts材料能够达到良好的预测精度水平。但是,我们毫无疑问,配置示例所需的时间和精力可以得到改进。在处理物理系统时,参数空间很大,通常是未知的,测试速度很慢,这使得该领域的进展很困难。我们的目的不是证明配置样本执行某种分类的准确性,而是展示配置具有模拟电压的非常小的材料样本以解决独立计算任务的潜力。这种SWCNT设备制造成本低廉,只需要低精度的组装,但如果配置正确,将能够作为多用途,单一任务的计算设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信