A blind MMSE multi-user detection based on NOOja algorithm

Junlin Zhang, Ling Nie
{"title":"A blind MMSE multi-user detection based on NOOja algorithm","authors":"Junlin Zhang, Ling Nie","doi":"10.1109/ICCI-CC.2012.6311206","DOIUrl":null,"url":null,"abstract":"A new blind adaptive MMSE multi-user detection (MUD) based on subspace tracking is presented. The new detector doesn't employ signal eigenvalue estimation but the signal subspace estimation, and it avoids performance deterioration induced by eigenvalue estimation error. The proposed MUD exploits the normalized orthogonal Oja (NOOja) subspace tracking algorithm for subspace estimation, since it guarantees the orthogonality of the weight matrix spanned by the singnal subspace in every iteration, which must be meet in the new detector. The simulation results the proposed MMSE detector has faster convergence rate, better output SINR (signal-to-interference-and-noise ratio) and bit error rate (BER) and lower the computational complexity.","PeriodicalId":427778,"journal":{"name":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2012.6311206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new blind adaptive MMSE multi-user detection (MUD) based on subspace tracking is presented. The new detector doesn't employ signal eigenvalue estimation but the signal subspace estimation, and it avoids performance deterioration induced by eigenvalue estimation error. The proposed MUD exploits the normalized orthogonal Oja (NOOja) subspace tracking algorithm for subspace estimation, since it guarantees the orthogonality of the weight matrix spanned by the singnal subspace in every iteration, which must be meet in the new detector. The simulation results the proposed MMSE detector has faster convergence rate, better output SINR (signal-to-interference-and-noise ratio) and bit error rate (BER) and lower the computational complexity.
基于NOOja算法的MMSE多用户盲检测
提出了一种新的基于子空间跟踪的盲自适应MMSE多用户检测方法。该检测器不采用信号特征值估计,而是采用信号子空间估计,避免了特征值估计误差导致的性能下降。该方法利用归一化正交Oja (noja)子空间跟踪算法进行子空间估计,保证了每次迭代中由信号子空间张成的权矩阵的正交性,这是新的检测器必须满足的。仿真结果表明,所提出的MMSE检测器具有更快的收敛速度、更好的输出信噪比(SINR)和误码率(BER)以及更低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信