Pretest Estimation in the Random Parameters Logit Model

Tong Zeng, Carter Hill
{"title":"Pretest Estimation in the Random Parameters Logit Model","authors":"Tong Zeng, Carter Hill","doi":"10.1108/S0731-9053(2010)0000026008","DOIUrl":null,"url":null,"abstract":"In this paper we use Monte Carlo sampling experiments to examine the properties of pretest estimators in the random parameters logit (RPL) model. The pretests are for the presence of random parameters. We study the Lagrange multiplier (LM), likelihood ratio (LR), and Wald tests, using conditional logit as the restricted model. The LM test is the fastest test to implement among these three test procedures since it only uses restricted, conditional logit, estimates. However, the LM-based pretest estimator has poor risk properties. The ratio of LM-based pretest estimator root mean squared error (RMSE) to the random parameters logit model estimator RMSE diverges from one with increases in the standard deviation of the parameter distribution. The LR and Wald tests exhibit properties of consistent tests, with the power approaching one as the specification error increases, so that the pretest estimator is consistent. We explore the power of these three tests for the random parameters by calculating the empirical percentile values, size, and rejection rates of the test statistics. We find the power of LR and Wald tests decreases with increases in the mean of the coefficient distribution. The LM test has the weakest power for presence of the random coefficient in the RPL model.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/S0731-9053(2010)0000026008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we use Monte Carlo sampling experiments to examine the properties of pretest estimators in the random parameters logit (RPL) model. The pretests are for the presence of random parameters. We study the Lagrange multiplier (LM), likelihood ratio (LR), and Wald tests, using conditional logit as the restricted model. The LM test is the fastest test to implement among these three test procedures since it only uses restricted, conditional logit, estimates. However, the LM-based pretest estimator has poor risk properties. The ratio of LM-based pretest estimator root mean squared error (RMSE) to the random parameters logit model estimator RMSE diverges from one with increases in the standard deviation of the parameter distribution. The LR and Wald tests exhibit properties of consistent tests, with the power approaching one as the specification error increases, so that the pretest estimator is consistent. We explore the power of these three tests for the random parameters by calculating the empirical percentile values, size, and rejection rates of the test statistics. We find the power of LR and Wald tests decreases with increases in the mean of the coefficient distribution. The LM test has the weakest power for presence of the random coefficient in the RPL model.
随机参数Logit模型中的预检验估计
本文利用蒙特卡罗抽样实验研究了随机参数logit (RPL)模型中预测估计量的性质。预测试是针对随机参数的存在。我们研究了拉格朗日乘数(LM),似然比(LR)和Wald检验,使用条件logit作为限制模型。LM测试是这三个测试过程中最快实现的测试,因为它只使用受限的、有条件的logit估计。然而,基于lm的预测试估计器具有较差的风险特性。随着参数分布标准差的增大,基于lm的预检验估计量均方根误差(RMSE)与随机参数logit模型估计量RMSE的比值偏离于1。LR测试和Wald测试表现出一致性测试的特性,随着规格误差的增加,功率接近于1,因此预测估计量是一致的。我们通过计算检验统计量的经验百分位数值、大小和拒绝率来探讨这三种检验对随机参数的有效性。我们发现LR和Wald检验的威力随着系数分布均值的增大而减小。对于RPL模型中随机系数的存在,LM检验的效力是最弱的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信