Using Support Vector Regression in multi-target prediction of drug toxicity

F. Adilova, Alisher Ikramov
{"title":"Using Support Vector Regression in multi-target prediction of drug toxicity","authors":"F. Adilova, Alisher Ikramov","doi":"10.1109/AICT50176.2020.9368837","DOIUrl":null,"url":null,"abstract":"We consider the task of drug activity prediction, specifically we predict the toxicity of fullerene-based nanoparticles in interaction with 1117 proteins. We use a multi-target Support Vector Regression model with a greedy feature selection technique to achieve RMSE of 362.9 on a test set. We also demonstrate the impact of hyperparameter tuning on model performance.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the task of drug activity prediction, specifically we predict the toxicity of fullerene-based nanoparticles in interaction with 1117 proteins. We use a multi-target Support Vector Regression model with a greedy feature selection technique to achieve RMSE of 362.9 on a test set. We also demonstrate the impact of hyperparameter tuning on model performance.
支持向量回归在药物毒性多目标预测中的应用
我们考虑药物活性预测的任务,特别是我们预测基于富勒烯的纳米颗粒与1117蛋白相互作用的毒性。我们使用多目标支持向量回归模型和贪婪特征选择技术,在测试集上实现了362.9的RMSE。我们还演示了超参数调优对模型性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信