Automated image analysis of noisy microarrays

Sharon I. Greenblum, M. Krucoff, J. Furst, D. Raicu
{"title":"Automated image analysis of noisy microarrays","authors":"Sharon I. Greenblum, M. Krucoff, J. Furst, D. Raicu","doi":"10.5220/0002038603710375","DOIUrl":null,"url":null,"abstract":"A recent extension of DNA microarray technology has been its use in DNA fingerprinting. Our research involved developing an algorithm that automatically analyzes microarray images by extracting useful information while ignoring the large amounts of noise. Our data set consisted of slides generated from DNA strands of 24 different cultures of anthrax from isolated locations (all the same strain that differ only in origin-specific neutral mutations). The data set was provided by Argonne National Laboratories in Illinois. Here we present a fully automated method that classifies these isolates at least as well as the published AMIA (Automated Microarray Image Analysis) Toolbox for MATLAB with virtually no required user interaction or external information, greatly increasing efficiency of the image analysis.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002038603710375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A recent extension of DNA microarray technology has been its use in DNA fingerprinting. Our research involved developing an algorithm that automatically analyzes microarray images by extracting useful information while ignoring the large amounts of noise. Our data set consisted of slides generated from DNA strands of 24 different cultures of anthrax from isolated locations (all the same strain that differ only in origin-specific neutral mutations). The data set was provided by Argonne National Laboratories in Illinois. Here we present a fully automated method that classifies these isolates at least as well as the published AMIA (Automated Microarray Image Analysis) Toolbox for MATLAB with virtually no required user interaction or external information, greatly increasing efficiency of the image analysis.
噪声微阵列的自动图像分析
DNA微阵列技术的最新扩展是其在DNA指纹识别中的应用。我们的研究涉及开发一种算法,该算法通过提取有用信息而忽略大量噪声来自动分析微阵列图像。我们的数据集由来自分离地点的24种不同炭疽培养物的DNA链生成的载玻片组成(所有相同的菌株,仅在起源特异性中性突变上有所不同)。该数据集由伊利诺斯州的阿贡国家实验室提供。在这里,我们提出了一种完全自动化的方法,可以对这些分离物进行分类,至少与已发布的AMIA(自动化微阵列图像分析)工具箱一样,几乎不需要用户交互或外部信息,大大提高了图像分析的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信