The ADM Formulation of SME Gravity

C. M. Reyes
{"title":"The ADM Formulation of SME Gravity","authors":"C. M. Reyes","doi":"10.1142/9789811275388_0046","DOIUrl":null,"url":null,"abstract":"The Hamiltonian formulation of the gravitational sector of the Standard-Model Extension (SME) with nondynamical fields $u$ and $s^{\\mu \\nu}$ is studied. We provide the relevant Hamiltonians that describe the constrained phase space and the dynamics of the induced metric on the ADM hypersurface. The generalization of the Gibbons-Hawking-York boundary term has been crucial to preventing second time-derivatives of the metric tensor in the Hamiltonians. By extracting the dynamics and constraints from the Einstein equations we have proved the equivalence between the Lagrangian and Hamiltonian formulations.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811275388_0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Hamiltonian formulation of the gravitational sector of the Standard-Model Extension (SME) with nondynamical fields $u$ and $s^{\mu \nu}$ is studied. We provide the relevant Hamiltonians that describe the constrained phase space and the dynamics of the induced metric on the ADM hypersurface. The generalization of the Gibbons-Hawking-York boundary term has been crucial to preventing second time-derivatives of the metric tensor in the Hamiltonians. By extracting the dynamics and constraints from the Einstein equations we have proved the equivalence between the Lagrangian and Hamiltonian formulations.
中小企业重力的ADM公式
研究了具有非动力场$u$和$s^{\mu \nu}$的标准模型扩展(SME)的引力扇区的哈密顿公式。我们提供了描述ADM超曲面上约束相空间和诱导度规动力学的相关哈密顿量。吉本斯-霍金-约克边界项的推广对于防止哈密顿量中度规张量的二阶导数是至关重要的。通过从爱因斯坦方程中提取动力学和约束,我们证明了拉格朗日公式和哈密顿公式之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信