{"title":"An asymptotical stability criterion for discrete-time stochastic neural networks with Markovian jumping and time-varying mixed delays","authors":"Hongjun Chu, Fang Wang, Lixin Gao","doi":"10.1109/CCDC.2010.5499090","DOIUrl":null,"url":null,"abstract":"The global asymptotical stability problem is considered for a class of discrete-time stochastic recurrent neural networks(NNs) with Markovian jumping parameters and time-varying mixed delays in this paper. The mixed time delays include discrete delays and distributed delays, and both are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. The neural networks have a finite number of modes, and the modes may jump from one to another according to a discrete-time Markov chain. Based on the Lyapunov method and stochastic analysis approach, delay-interval dependent stability criterion is obtained in terms of linear matrix inequality(LMI) and generalizes existing results. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results.","PeriodicalId":227938,"journal":{"name":"2010 Chinese Control and Decision Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2010.5499090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The global asymptotical stability problem is considered for a class of discrete-time stochastic recurrent neural networks(NNs) with Markovian jumping parameters and time-varying mixed delays in this paper. The mixed time delays include discrete delays and distributed delays, and both are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. The neural networks have a finite number of modes, and the modes may jump from one to another according to a discrete-time Markov chain. Based on the Lyapunov method and stochastic analysis approach, delay-interval dependent stability criterion is obtained in terms of linear matrix inequality(LMI) and generalizes existing results. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results.