Face Forgery Detection Based on the Improved Siamese Network

Bo Wang, Yucai Li, Xiaohan Wu, Yanyan Ma, Zengren Song, Min Wu
{"title":"Face Forgery Detection Based on the Improved Siamese Network","authors":"Bo Wang, Yucai Li, Xiaohan Wu, Yanyan Ma, Zengren Song, Min Wu","doi":"10.1155/2022/5169873","DOIUrl":null,"url":null,"abstract":"Face tampering is an intriguing task in video/image genuineness identification and has attracted significant amounts of attention in recent years. In this work, we propose a face forgery detection method that consists of preprocessing, an improved Siamese network-based feature extractor (including a feature alignment module), and postprocessing (a voting principle). Roughly speaking, our method extracts the features in the grey space of face/background image pairs and measures the difference to make decisions. Experiments on several standard databases prove the effectiveness of our method, and especially on the low-quality subdataset of the FaceForensics++ , our method achieves a competitive result.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Secur. Commun. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5169873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Face tampering is an intriguing task in video/image genuineness identification and has attracted significant amounts of attention in recent years. In this work, we propose a face forgery detection method that consists of preprocessing, an improved Siamese network-based feature extractor (including a feature alignment module), and postprocessing (a voting principle). Roughly speaking, our method extracts the features in the grey space of face/background image pairs and measures the difference to make decisions. Experiments on several standard databases prove the effectiveness of our method, and especially on the low-quality subdataset of the FaceForensics++ , our method achieves a competitive result.
基于改进Siamese网络的人脸伪造检测
人脸篡改是视频/图像真伪识别中一个有趣的问题,近年来引起了人们的广泛关注。在这项工作中,我们提出了一种人脸伪造检测方法,该方法由预处理、改进的基于Siamese网络的特征提取器(包括特征对齐模块)和后处理(投票原则)组成。粗略地说,我们的方法是提取人脸/背景图像对的灰空间特征,并测量差异来做出决策。在多个标准数据库上的实验证明了该方法的有效性,特别是在FaceForensics++的低质量子数据集上,我们的方法取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信