{"title":"Agglomerative hierarchical kernel spectral data clustering","authors":"Raghvendra Mall, R. Langone, J. Suykens","doi":"10.1109/CIDM.2014.7008142","DOIUrl":null,"url":null,"abstract":"In this paper we extend the agglomerative hierarchical kernel spectral clustering (AH-KSC [1]) technique from networks to datasets and images. The kernel spectral clustering (KSC) technique builds a clustering model in a primal-dual optimization framework. The dual solution leads to an eigen-decomposition. The clustering model consists of kernel evaluations, projections onto the eigenvectors and a powerful out-of-sample extension property. We first estimate the optimal model parameters using the balanced angular fitting (BAF) [2] criterion. We then exploit the eigen-projections corresponding to these parameters to automatically identify a set of increasing distance thresholds. These distance thresholds provide the clusters at different levels of hierarchy in the dataset which are merged in an agglomerative fashion as shown in [1], [4]. We showcase the effectiveness of the AH-KSC method on several datasets and real world images. We compare the AH-KSC method with several agglomerative hierarchical clustering techniques and overcome the issues of hierarchical KSC technique proposed in [5].","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper we extend the agglomerative hierarchical kernel spectral clustering (AH-KSC [1]) technique from networks to datasets and images. The kernel spectral clustering (KSC) technique builds a clustering model in a primal-dual optimization framework. The dual solution leads to an eigen-decomposition. The clustering model consists of kernel evaluations, projections onto the eigenvectors and a powerful out-of-sample extension property. We first estimate the optimal model parameters using the balanced angular fitting (BAF) [2] criterion. We then exploit the eigen-projections corresponding to these parameters to automatically identify a set of increasing distance thresholds. These distance thresholds provide the clusters at different levels of hierarchy in the dataset which are merged in an agglomerative fashion as shown in [1], [4]. We showcase the effectiveness of the AH-KSC method on several datasets and real world images. We compare the AH-KSC method with several agglomerative hierarchical clustering techniques and overcome the issues of hierarchical KSC technique proposed in [5].