Curvelet Domain Watermark Detection Using Alpha-Stable Models

Chengzhi Deng, Huasheng Zhu, Shengqian Wang
{"title":"Curvelet Domain Watermark Detection Using Alpha-Stable Models","authors":"Chengzhi Deng, Huasheng Zhu, Shengqian Wang","doi":"10.1109/IAS.2009.21","DOIUrl":null,"url":null,"abstract":"This paper address issues that arise in copyright protection systems of digital images, which employ blind watermark verification structures in the curvelet domain. First, we observe that statistical distribution with heavy algebraic tails, such as the alpha-stable family, are in many cases more accurate modeling tools for the curvelet coefficients than families with exponential tails such as generalized Gaussian. Motivated by our modeling results, we then design a new processor for blind watermark detection using the Cauchy member of the alpha-stable family. We analyze the performance of the new detector in terms of the associated probabilities of detection and false alarm and we compare it to the performance of the generalized Gaussian detector and the traditional correlation-based detector by performance experiments. The experiments prove that Cauchy detector is superior to the others.","PeriodicalId":240354,"journal":{"name":"2009 Fifth International Conference on Information Assurance and Security","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper address issues that arise in copyright protection systems of digital images, which employ blind watermark verification structures in the curvelet domain. First, we observe that statistical distribution with heavy algebraic tails, such as the alpha-stable family, are in many cases more accurate modeling tools for the curvelet coefficients than families with exponential tails such as generalized Gaussian. Motivated by our modeling results, we then design a new processor for blind watermark detection using the Cauchy member of the alpha-stable family. We analyze the performance of the new detector in terms of the associated probabilities of detection and false alarm and we compare it to the performance of the generalized Gaussian detector and the traditional correlation-based detector by performance experiments. The experiments prove that Cauchy detector is superior to the others.
基于稳定模型的曲线域水印检测
本文研究了数字图像版权保护系统中采用曲线域盲水印验证结构的问题。首先,我们观察到具有重代数尾的统计分布,如α稳定族,在许多情况下比具有指数尾的族(如广义高斯)更准确地建模曲线系数。根据我们的建模结果,我们设计了一种新的处理器,用于使用α稳定家族的柯西成员进行盲水印检测。我们从检测和虚警的相关概率的角度分析了新检测器的性能,并通过性能实验将其与广义高斯检测器和传统的基于相关的检测器的性能进行了比较。实验证明,柯西探测器优于其他探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信