3D Mapping Methods and Consistency Checks to Exclude GNSS Multipath/NLOS Effects

Jasmine Zidan, Osama Alluhaibi, E. I. Adegoke, E. Kampert, M. Higgins, Col R. Ford
{"title":"3D Mapping Methods and Consistency Checks to Exclude GNSS Multipath/NLOS Effects","authors":"Jasmine Zidan, Osama Alluhaibi, E. I. Adegoke, E. Kampert, M. Higgins, Col R. Ford","doi":"10.1109/UCET51115.2020.9205423","DOIUrl":null,"url":null,"abstract":"In urban canyons, the positioning accuracy obtainable from global navigation satellite systems (GNSS) is mainly impaired by signal interference due to multipath and non-lineof-sight (NLOS) effects. GNSS is one of the sensors used in connected autonomous vehicles (CAVs) for positioning, navigation and timing (PNT). Hence, it is essential that GNSS receivers in CAVs are robust and resilient. In this paper, a method consisting of two layers of GNSS observation checks is suggested to exclude these effects in order to improve the positioning accuracy. The first layer excludes all non-consistent measurements identified by a chi-square test threshold. The second layer uses a decision tree for the exclusion of any remaining multipath/NLOS affected measurements, based on a data set obtained from a ray tracer for a 3D mapped model environment. The simulation results show an enhancement in positioning accuracy greater than 95%.","PeriodicalId":163493,"journal":{"name":"2020 International Conference on UK-China Emerging Technologies (UCET)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on UK-China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET51115.2020.9205423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In urban canyons, the positioning accuracy obtainable from global navigation satellite systems (GNSS) is mainly impaired by signal interference due to multipath and non-lineof-sight (NLOS) effects. GNSS is one of the sensors used in connected autonomous vehicles (CAVs) for positioning, navigation and timing (PNT). Hence, it is essential that GNSS receivers in CAVs are robust and resilient. In this paper, a method consisting of two layers of GNSS observation checks is suggested to exclude these effects in order to improve the positioning accuracy. The first layer excludes all non-consistent measurements identified by a chi-square test threshold. The second layer uses a decision tree for the exclusion of any remaining multipath/NLOS affected measurements, based on a data set obtained from a ray tracer for a 3D mapped model environment. The simulation results show an enhancement in positioning accuracy greater than 95%.
排除GNSS多路径/NLOS影响的3D映射方法和一致性检查
在城市峡谷中,全球卫星导航系统(GNSS)的定位精度主要受到多径和非视距(NLOS)效应的信号干扰的影响。GNSS是用于联网自动驾驶汽车(cav)定位、导航和授时(PNT)的传感器之一。因此,cav中的GNSS接收器必须具有鲁棒性和弹性。为了提高定位精度,本文提出了一种由两层GNSS观测检查组成的方法来排除这些影响。第一层排除了由卡方检验阈值识别的所有不一致的测量。第二层使用决策树来排除任何剩余的多路径/NLOS影响的测量,基于从3D映射模型环境的光线追踪器获得的数据集。仿真结果表明,定位精度提高95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信