Fractional low-order independent component analysis for face recognition robust to partial occlusion

X. Chen, Wen Li, Zengli Liu, Zaihong Zhou
{"title":"Fractional low-order independent component analysis for face recognition robust to partial occlusion","authors":"X. Chen, Wen Li, Zengli Liu, Zaihong Zhou","doi":"10.1109/ISBAST.2014.7013084","DOIUrl":null,"url":null,"abstract":"As biometric vector may not follow the Gaussian distribution under complex light, pose and accessories, systems often yield unacceptable performance when subjected to impulsive, non-Gaussian noise. This paper adopts signal symmetric alpha stable distribution theory to construct fractional low-order independent component analysis algorithm (FLOD-ICA) and applied FLOD-ICA to solve the partial occlusion face recognition problem. Experiments verified that our proposed scheme is effective for face recognition under partial occlusion.","PeriodicalId":292333,"journal":{"name":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","volume":"577 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2014.7013084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As biometric vector may not follow the Gaussian distribution under complex light, pose and accessories, systems often yield unacceptable performance when subjected to impulsive, non-Gaussian noise. This paper adopts signal symmetric alpha stable distribution theory to construct fractional low-order independent component analysis algorithm (FLOD-ICA) and applied FLOD-ICA to solve the partial occlusion face recognition problem. Experiments verified that our proposed scheme is effective for face recognition under partial occlusion.
分数阶独立分量分析对部分遮挡的鲁棒性人脸识别
由于生物特征向量在复杂的光线、姿态和附件下可能不遵循高斯分布,系统在受到脉冲非高斯噪声时往往产生不可接受的性能。本文采用信号对称α稳定分布理论构造分数阶低阶独立分量分析算法(FLOD-ICA),并应用FLOD-ICA解决部分遮挡人脸识别问题。实验验证了该方法对局部遮挡下的人脸识别是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信