Note on linear relations in Galois cohomology and étale K-theory of curves

P. Krasoń
{"title":"Note on linear relations in Galois cohomology and étale K-theory of curves","authors":"P. Krasoń","doi":"10.1142/S0219199721500103","DOIUrl":null,"url":null,"abstract":"In this paper we investigate a local to global principle for Galois cohomology of number fields with coefficients in the Tate module of an abelian variety. In \\cite{bk13} G. Banaszak and the author obtained the sufficient condition for the validity of the local to global principle for {\\'e}tale $K$-theory of a curve . This condition in fact has been established by means of an analysis of the corresponding problem in the Galois cohomology. We show that in some cases this result is the best possible i.e if this condition does not hold we obtain counterexamples. We also give some examples of curves and their Jacobians. Finally, we prove the dynamical version of the local to global principle for {\\'e}tale $K$-theory of a curve. The dynamical local to global principle for the groups of Mordell-Weil type has recently been considered by S. Bara{\\'n}czuk in \\cite{b17}. We show that all our results remain valid for Quillen $K$-theory of ${\\cal X}$ if the Bass and Quillen-Lichtenbaum conjectures hold true for ${\\cal X}.$","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219199721500103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate a local to global principle for Galois cohomology of number fields with coefficients in the Tate module of an abelian variety. In \cite{bk13} G. Banaszak and the author obtained the sufficient condition for the validity of the local to global principle for {\'e}tale $K$-theory of a curve . This condition in fact has been established by means of an analysis of the corresponding problem in the Galois cohomology. We show that in some cases this result is the best possible i.e if this condition does not hold we obtain counterexamples. We also give some examples of curves and their Jacobians. Finally, we prove the dynamical version of the local to global principle for {\'e}tale $K$-theory of a curve. The dynamical local to global principle for the groups of Mordell-Weil type has recently been considered by S. Bara{\'n}czuk in \cite{b17}. We show that all our results remain valid for Quillen $K$-theory of ${\cal X}$ if the Bass and Quillen-Lichtenbaum conjectures hold true for ${\cal X}.$
关于伽罗瓦上同调中的线性关系和曲线的 k -理论
本文研究了一类阿贝尔变种的Tate模中带系数数域伽罗瓦上同调的一个局部到全局原理。在\cite{bk13}中,G. Banaszak和作者得到了 {}$K$ -曲线理论的局部{变}全局原理成立的充分条件。通过对伽罗瓦上同调中相应问题的分析,实际上已经建立了这个条件。我们证明,在某些情况下,这个结果是最好的可能,即如果这个条件不成立,我们得到反例。我们还给出了一些曲线及其雅可比矩阵的例子。最后,我们证明了曲线的 $K$ -理论的局部{变}全局原理的动态版本。最近S. Barańczuk在\cite{b17}中考虑了modell - weil型群的动态局域到全局原理。我们证明,如果Bass和Quillen- lichtenbaum的猜想成立,那么我们所有的结果仍然适用于${\cal X}$的Quillen $K$ -理论 ${\cal X}.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信