{"title":"Fault-Tolerant Energy Management for Real-Time Systems with Weakly Hard QoS Assurance","authors":"Linwei Niu","doi":"10.1109/INFOCOM42981.2021.9488822","DOIUrl":null,"url":null,"abstract":"While energy consumption is the primary concern for the design of real-time embedded systems, fault-tolerance and quality of service (QoS) are becoming increasingly important in the development of today’s pervasive computing systems. In this work, we study the problem of energy-aware standby-sparing for weakly hard real-time embedded systems. The standby-sparing systems adopt a primary processor and a spare processor to provide fault tolerance for both permanent and transient faults. In order to reduce energy consumption for such kind of systems, we proposed two novel scheduling schemes: one for (1,1)-hard tasks and one for general (m,k)-hard tasks which require that at least m out of any k consecutive jobs of a task meet their deadlines. Through extensive evaluations, our results demonstrate that the proposed techniques significantly outperform the previous research in reducing energy consumption for both (1,1)-hard task sets and general (m,k)-hard task sets while assuring fault tolerance through standby-sparing.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"933 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM42981.2021.9488822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While energy consumption is the primary concern for the design of real-time embedded systems, fault-tolerance and quality of service (QoS) are becoming increasingly important in the development of today’s pervasive computing systems. In this work, we study the problem of energy-aware standby-sparing for weakly hard real-time embedded systems. The standby-sparing systems adopt a primary processor and a spare processor to provide fault tolerance for both permanent and transient faults. In order to reduce energy consumption for such kind of systems, we proposed two novel scheduling schemes: one for (1,1)-hard tasks and one for general (m,k)-hard tasks which require that at least m out of any k consecutive jobs of a task meet their deadlines. Through extensive evaluations, our results demonstrate that the proposed techniques significantly outperform the previous research in reducing energy consumption for both (1,1)-hard task sets and general (m,k)-hard task sets while assuring fault tolerance through standby-sparing.