Hierarchical interpretation of human activities using competitive learning

H. Wechsler, Zoran Duric, Fayin Li
{"title":"Hierarchical interpretation of human activities using competitive learning","authors":"H. Wechsler, Zoran Duric, Fayin Li","doi":"10.1109/ICPR.2002.1048308","DOIUrl":null,"url":null,"abstract":"In this paper we describe a method of learning hierarchical representations for describing and recognizing gestures expressed as one and two arm movements using competitive learning methods. At the low end of the hierarchy, the atomic motions (\"letters\") corresponding to flowfields computed from successive color image frames are derived using Learning Vector Quantization (LVQ). At the next intermediate level, the atomic motions are clustered into actions (\"words\") using homogeneity criteria. The highest level combines actions into activities (\"sentences\") using proximity driven clustering. We demonstrate the feasibility and the robustness of our approach on real color-image sequences, each consisting of several hundred frames corresponding to dynamic one and two arm movements.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we describe a method of learning hierarchical representations for describing and recognizing gestures expressed as one and two arm movements using competitive learning methods. At the low end of the hierarchy, the atomic motions ("letters") corresponding to flowfields computed from successive color image frames are derived using Learning Vector Quantization (LVQ). At the next intermediate level, the atomic motions are clustered into actions ("words") using homogeneity criteria. The highest level combines actions into activities ("sentences") using proximity driven clustering. We demonstrate the feasibility and the robustness of our approach on real color-image sequences, each consisting of several hundred frames corresponding to dynamic one and two arm movements.
利用竞争性学习对人类活动进行分层解释
在本文中,我们描述了一种学习分层表示的方法,用于描述和识别使用竞争学习方法表示为一个和两个手臂运动的手势。在层次结构的低端,原子运动(“字母”)对应于从连续彩色图像帧计算的流场,使用学习向量量化(LVQ)导出。在下一个中间级别,原子运动使用同质性标准聚类成动作(“词”)。最高级别的使用接近驱动聚类将动作组合成活动(“句子”)。我们证明了我们的方法在真实彩色图像序列上的可行性和鲁棒性,每个彩色图像序列由几百帧组成,对应于动态的单臂和双臂运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信