A practical indoor TOA ranging error model for localization algorithm

Jie He, Qin Wang, Qianxiong Zhang, Bingfeng Liu, Yanwei Yu
{"title":"A practical indoor TOA ranging error model for localization algorithm","authors":"Jie He, Qin Wang, Qianxiong Zhang, Bingfeng Liu, Yanwei Yu","doi":"10.1109/PIMRC.2011.6139685","DOIUrl":null,"url":null,"abstract":"This paper presents an practical RSSI based TOA ranging error model (RITEM) for localization algorithm, which can be used to estimate ranging error interval in real time. In RITEM, ranging error is classified into four classes by the RSSI value in TOA ranging process and ranging error of each class always within a certain interval. RITEM is verified by field tests in two typical indoor environments. Then, RITEM is applied into Ranging Error Classification (REC) based TOA localization algorithm to introduce its application methodology. Experiment result indicates that REC algorithm has significantly improved performance in typical indoor environment, comparing with LS, CN-TOAG and Nano localization algorithms.","PeriodicalId":262660,"journal":{"name":"2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2011.6139685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper presents an practical RSSI based TOA ranging error model (RITEM) for localization algorithm, which can be used to estimate ranging error interval in real time. In RITEM, ranging error is classified into four classes by the RSSI value in TOA ranging process and ranging error of each class always within a certain interval. RITEM is verified by field tests in two typical indoor environments. Then, RITEM is applied into Ranging Error Classification (REC) based TOA localization algorithm to introduce its application methodology. Experiment result indicates that REC algorithm has significantly improved performance in typical indoor environment, comparing with LS, CN-TOAG and Nano localization algorithms.
一种实用的室内TOA测距误差模型
提出了一种实用的基于RSSI的TOA测距误差模型(RITEM),可用于实时估计定位算法的测距误差区间。在RITEM中,根据TOA测距过程中的RSSI值将测距误差分为四类,每一类测距误差始终在一定的间隔内。RITEM通过两种典型室内环境的现场试验进行了验证。然后,将RITEM应用到基于测距误差分类(REC)的TOA定位算法中,介绍了RITEM的应用方法。实验结果表明,与LS、CN-TOAG和Nano定位算法相比,REC算法在典型室内环境下的定位性能有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信