{"title":"Organising Chemical Reaction Networks in Space and Time with Microfluidics","authors":"Gareth L. Jones, C. Lovell, H. Morgan, K. Zauner","doi":"10.4018/jnmc.2011010104","DOIUrl":null,"url":null,"abstract":"Information processing is essential for any lifeform to maintain its organisation despite continuous entropic disturbance. Macromolecules provide the ubiquitous underlying substrate on which nature implements information processing and have also come into focus for technical applications. There are two distinct approaches to the use of molecules for computing. Molecules can be employed to mimic the logic switches of conventional computers or they can be used in a way that exploits the complex functionality offered by a molecular computing substrate. Prerequisite to the latter is a mapping of the versatile means to achieve this. In the present paper we review microfluidic technology as a versatile means to achieve this, show how we use it, and provide proven recipes for its application.","PeriodicalId":259233,"journal":{"name":"Int. J. Nanotechnol. Mol. Comput.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nanotechnol. Mol. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jnmc.2011010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Information processing is essential for any lifeform to maintain its organisation despite continuous entropic disturbance. Macromolecules provide the ubiquitous underlying substrate on which nature implements information processing and have also come into focus for technical applications. There are two distinct approaches to the use of molecules for computing. Molecules can be employed to mimic the logic switches of conventional computers or they can be used in a way that exploits the complex functionality offered by a molecular computing substrate. Prerequisite to the latter is a mapping of the versatile means to achieve this. In the present paper we review microfluidic technology as a versatile means to achieve this, show how we use it, and provide proven recipes for its application.