An automated GA-based fuzzy image enhancement method

O. Khayat, J. Razjouyan, Mina Aghvami, Hamid Reza Shahdoosti, B. Loni
{"title":"An automated GA-based fuzzy image enhancement method","authors":"O. Khayat, J. Razjouyan, Mina Aghvami, Hamid Reza Shahdoosti, B. Loni","doi":"10.1109/CIIP.2009.4937874","DOIUrl":null,"url":null,"abstract":"This paper presents an automated algorithm for image enhancement. A novel parametric indices of fuzziness (PIF) is introduced, which serves as the optimization criterion of the contrast enhancement procedure. The proposed PIF comprises the Sugeno class of involutive fuzzy complements and the first order fuzzy moment of the image. The PIF as the measure of fuzziness should be maximized, and the maximum of PIF is tuned based on the first-order fuzzy moment of the image. The parameters of the transformation function are found by the genetic algorithm aiming to maximize the PIF. Finally, several experiments are made to demonstrate the efficiency of the proposed method.","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents an automated algorithm for image enhancement. A novel parametric indices of fuzziness (PIF) is introduced, which serves as the optimization criterion of the contrast enhancement procedure. The proposed PIF comprises the Sugeno class of involutive fuzzy complements and the first order fuzzy moment of the image. The PIF as the measure of fuzziness should be maximized, and the maximum of PIF is tuned based on the first-order fuzzy moment of the image. The parameters of the transformation function are found by the genetic algorithm aiming to maximize the PIF. Finally, several experiments are made to demonstrate the efficiency of the proposed method.
一种基于遗传算法的自动模糊图像增强方法
本文提出了一种自动图像增强算法。引入了一种新的模糊参数指标(PIF),作为对比度增强过程的优化准则。所提出的PIF由Sugeno类对合模糊补和图像的一阶模糊矩组成。作为模糊度量的PIF应该最大化,并根据图像的一阶模糊矩来调整PIF的最大值。以最大PIF为目标,通过遗传算法确定变换函数的参数。最后,通过实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信