On the Pitfalls of Security Evaluation of Robust Federated Learning

Momin Ahmad Khan, Virat Shejwalkar, A. Houmansadr, F. Anwar
{"title":"On the Pitfalls of Security Evaluation of Robust Federated Learning","authors":"Momin Ahmad Khan, Virat Shejwalkar, A. Houmansadr, F. Anwar","doi":"10.1109/SPW59333.2023.00011","DOIUrl":null,"url":null,"abstract":"Prior literature has demonstrated that Federated learning (FL) is vulnerable to poisoning attacks that aim to jeopardize FL performance, and consequently, has introduced numerous defenses and demonstrated their robustness in various FL settings. In this work, we closely investigate a largely over-looked aspect in the robust FL literature, i.e., the experimental setup used to evaluate the robustness of FL poisoning defenses. We thoroughly review 50 defense works and highlight several questionable trends in the experimental setup of FL poisoning defense papers; we discuss the potential repercussions of such experimental setups on the key conclusions made by these works about the robustness of the proposed defenses. As a representative case study, we also evaluate a recent poisoning recovery paper from IEEE S&P'23, called FedRecover. Our case study demonstrates the importance of the experimental setup decisions (e.g., selecting representative and challenging datasets) in the validity of the robustness claims; For instance, while FedRecover performs well for MNIST and FashionMNIST (used in the original paper), in our experiments it performed poorly for FEMNIST and CIFAR10.","PeriodicalId":308378,"journal":{"name":"2023 IEEE Security and Privacy Workshops (SPW)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW59333.2023.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Prior literature has demonstrated that Federated learning (FL) is vulnerable to poisoning attacks that aim to jeopardize FL performance, and consequently, has introduced numerous defenses and demonstrated their robustness in various FL settings. In this work, we closely investigate a largely over-looked aspect in the robust FL literature, i.e., the experimental setup used to evaluate the robustness of FL poisoning defenses. We thoroughly review 50 defense works and highlight several questionable trends in the experimental setup of FL poisoning defense papers; we discuss the potential repercussions of such experimental setups on the key conclusions made by these works about the robustness of the proposed defenses. As a representative case study, we also evaluate a recent poisoning recovery paper from IEEE S&P'23, called FedRecover. Our case study demonstrates the importance of the experimental setup decisions (e.g., selecting representative and challenging datasets) in the validity of the robustness claims; For instance, while FedRecover performs well for MNIST and FashionMNIST (used in the original paper), in our experiments it performed poorly for FEMNIST and CIFAR10.
鲁棒联邦学习安全评估缺陷研究
先前的文献表明,联邦学习(FL)容易受到旨在危害FL性能的中毒攻击,因此,引入了许多防御措施,并在各种FL设置中展示了它们的鲁棒性。在这项工作中,我们仔细研究了强大的FL文献中一个很大程度上被忽视的方面,即用于评估FL中毒防御的稳健性的实验设置。我们全面回顾了50篇答辩论文,并强调了FL中毒答辩论文实验设置中几个值得怀疑的趋势;我们讨论了这些实验设置对这些关于拟议防御的稳健性的关键结论的潜在影响。作为一个代表性的案例研究,我们还评估了IEEE标准普尔23年最近发表的一篇名为FedRecover的中毒恢复论文。我们的案例研究证明了实验设置决策(例如,选择具有代表性和挑战性的数据集)在稳健性声明有效性中的重要性;例如,虽然FedRecover对MNIST和FashionMNIST(在原始论文中使用)表现良好,但在我们的实验中,它对FEMNIST和CIFAR10表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信