Modified merging algorithm of fuzzy clustering with expected value

W. Afifi, H. Hefny
{"title":"Modified merging algorithm of fuzzy clustering with expected value","authors":"W. Afifi, H. Hefny","doi":"10.1109/ICCES.2015.7393038","DOIUrl":null,"url":null,"abstract":"The objective function of a fuzzy clustering algorithm is minimizing the sum of weighted distance function between data objects and cluster centers. Various cluster validity indexes evaluate the cluster's results from two aspects: compactness and separation measures. The fuzzy clustering algorithm with the expected value uses the merging algorithm to get separated clusters. The merging algorithm based on distance function. The distance function is not a good indicator to a separation measure. The clusters may be separated but these clusters are overlapped. This paper proposes a modified merging algorithm of fuzzy clustering with expected value (MCFEV). The MCFEV algorithm uses a similarity measure to merge overlapping clusters and to get the optimal number of clusters. The MCFEV algorithm is compared with the fuzzy c means (FCM) and possibilistic clustering algorithm (PCA) in the numerical examples and the real applications. A fuzzy cluster validity index (XB) is estimated for the above clustering algorithms. The results show the effective and accuracy of MCFEV algorithm.","PeriodicalId":227813,"journal":{"name":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2015.7393038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective function of a fuzzy clustering algorithm is minimizing the sum of weighted distance function between data objects and cluster centers. Various cluster validity indexes evaluate the cluster's results from two aspects: compactness and separation measures. The fuzzy clustering algorithm with the expected value uses the merging algorithm to get separated clusters. The merging algorithm based on distance function. The distance function is not a good indicator to a separation measure. The clusters may be separated but these clusters are overlapped. This paper proposes a modified merging algorithm of fuzzy clustering with expected value (MCFEV). The MCFEV algorithm uses a similarity measure to merge overlapping clusters and to get the optimal number of clusters. The MCFEV algorithm is compared with the fuzzy c means (FCM) and possibilistic clustering algorithm (PCA) in the numerical examples and the real applications. A fuzzy cluster validity index (XB) is estimated for the above clustering algorithms. The results show the effective and accuracy of MCFEV algorithm.
改进的期望值模糊聚类合并算法
模糊聚类算法的目标函数是最小化数据对象与聚类中心之间的加权距离函数之和。各种聚类有效性指标从紧密度和分离度两个方面对聚类结果进行评价。带有期望值的模糊聚类算法采用合并算法得到分离的聚类。基于距离函数的合并算法。距离函数不能很好地指示分离度量。这些星团可能是分开的,但这些星团是重叠的。提出了一种改进的期望值模糊聚类合并算法(MCFEV)。MCFEV算法使用相似度度量来合并重叠的聚类,并得到最优的聚类数。在数值算例和实际应用中,将MCFEV算法与模糊c均值(FCM)和可能性聚类算法(PCA)进行了比较。对上述聚类算法估计了模糊聚类有效性指数(XB)。实验结果表明了MCFEV算法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信