A Machine Learning Inspired Transceiver with ISI-Resilient Data Encoding: Hybrid-Ternary Coding + 2-Tap FFE + CTLE + Feature Extraction and Classification for 44.7dB Channel Loss in 7.3pJ/bit

Zhiping Wang, M. Megahed, Yusang Chun, Tejasvi Anand
{"title":"A Machine Learning Inspired Transceiver with ISI-Resilient Data Encoding: Hybrid-Ternary Coding + 2-Tap FFE + CTLE + Feature Extraction and Classification for 44.7dB Channel Loss in 7.3pJ/bit","authors":"Zhiping Wang, M. Megahed, Yusang Chun, Tejasvi Anand","doi":"10.23919/VLSICircuits52068.2021.9492510","DOIUrl":null,"url":null,"abstract":"This paper presents a machine learning inspired energy-efficient transceiver targeting long-reach channels using an ISI-resilient hybrid-ternary encoding on the transmitter and feature extraction and classification on the receiver. In addition to data encoding, the proposed transceiver also employs a 2-tap FFE and CTLE to achieve communication on a 44.7dB loss FR4 channel with BER less than 1×10-6, and an energy efficiency of 7.3pJ/bit at 13.8Gb/s in 65nm CMOS.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a machine learning inspired energy-efficient transceiver targeting long-reach channels using an ISI-resilient hybrid-ternary encoding on the transmitter and feature extraction and classification on the receiver. In addition to data encoding, the proposed transceiver also employs a 2-tap FFE and CTLE to achieve communication on a 44.7dB loss FR4 channel with BER less than 1×10-6, and an energy efficiency of 7.3pJ/bit at 13.8Gb/s in 65nm CMOS.
一种具有isi弹性数据编码的机器学习启发的收发器:混合三元编码+ 2-Tap FFE + CTLE +特征提取和分类,用于7.3pJ/bit的44.7dB信道损耗
本文提出了一种受机器学习启发的节能收发器,目标是远程信道,在发射器上使用isi弹性混合三元编码,在接收器上使用特征提取和分类。除了数据编码之外,该收发器还采用了2分接FFE和CTLE,在损耗44.7dB的FR4信道上实现通信,误码率小于1×10-6,在65nm CMOS中以13.8Gb/s的速度实现7.3pJ/bit的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信