Extensions of Antipodal-Type Theorems

Viacheslav Kalashnikov, A. Talman, N. Kalashnykova, L. Alanís-López
{"title":"Extensions of Antipodal-Type Theorems","authors":"Viacheslav Kalashnikov, A. Talman, N. Kalashnykova, L. Alanís-López","doi":"10.1109/UMSO.2018.8637224","DOIUrl":null,"url":null,"abstract":"The paper develops the extensions of both the antipodal (Borsuk–Ulam) theorem and Browder theorem to the cases embracing star-shaped domains of the studied mappings and a multi-valued nature of the latter.To be more specific, by making use of the triangulation procedure, we spread out the antipodal and fixed-point theorems to the case of not necessarily convex (star-shaped) domains. In addition, similar extensions are obtained for multi-valued mappings defined over star-shaped sets. Moreover, a directt algorithm shaping the required connected path of the zero points of the mapping has been designed, and its convergence demonstrated.","PeriodicalId":433225,"journal":{"name":"2018 International Conference on Unconventional Modelling, Simulation and Optimization - Soft Computing and Meta Heuristics - UMSO","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unconventional Modelling, Simulation and Optimization - Soft Computing and Meta Heuristics - UMSO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UMSO.2018.8637224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper develops the extensions of both the antipodal (Borsuk–Ulam) theorem and Browder theorem to the cases embracing star-shaped domains of the studied mappings and a multi-valued nature of the latter.To be more specific, by making use of the triangulation procedure, we spread out the antipodal and fixed-point theorems to the case of not necessarily convex (star-shaped) domains. In addition, similar extensions are obtained for multi-valued mappings defined over star-shaped sets. Moreover, a directt algorithm shaping the required connected path of the zero points of the mapping has been designed, and its convergence demonstrated.
对跖型定理的扩展
本文发展了对映(Borsuk-Ulam)定理和Browder定理在包含所研究映射的星形域和后者的多值性质的情况下的推广。更具体地说,通过使用三角剖分程序,我们将对映定理和不动点定理扩展到不一定是凸(星形)域的情况。此外,对于星形集上定义的多值映射也得到了类似的扩展。此外,还设计了一种直接确定映射的零点所需要的连通路径的算法,并证明了该算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信