Deep, super-narrow neural network is a universal classifier

Lech Szymanski, B. McCane
{"title":"Deep, super-narrow neural network is a universal classifier","authors":"Lech Szymanski, B. McCane","doi":"10.1109/IJCNN.2012.6252513","DOIUrl":null,"url":null,"abstract":"Deep architecture models are known to be conducive to good generalisation for certain types of classification tasks. Existing unsupervised and semi-supervised training methods do not explain why and when deep internal representations will be effective. We investigate the fundamental principles of representation in deep architectures by devising a method for binary classification in multi-layer feed forward networks with limited breadth. We show that, given enough layers, a super-narrow neural network, with two neurons per layer, is capable of shattering any separable binary dataset. We also show that datasets that exhibit certain type of symmetries are better suited for deep representation and may require only few hidden layers to produce desired classification.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Deep architecture models are known to be conducive to good generalisation for certain types of classification tasks. Existing unsupervised and semi-supervised training methods do not explain why and when deep internal representations will be effective. We investigate the fundamental principles of representation in deep architectures by devising a method for binary classification in multi-layer feed forward networks with limited breadth. We show that, given enough layers, a super-narrow neural network, with two neurons per layer, is capable of shattering any separable binary dataset. We also show that datasets that exhibit certain type of symmetries are better suited for deep representation and may require only few hidden layers to produce desired classification.
深度、超窄神经网络是一种通用分类器
众所周知,深度架构模型有助于对某些类型的分类任务进行良好的泛化。现有的无监督和半监督训练方法并不能解释深层内部表征为何以及何时有效。我们通过设计一种在有限宽度的多层前馈网络中进行二值分类的方法来研究深度体系结构中表示的基本原理。我们证明,给定足够的层,一个超窄的神经网络,每层有两个神经元,能够粉碎任何可分离的二进制数据集。我们还表明,表现出某种对称性的数据集更适合深度表示,并且可能只需要很少的隐藏层就可以产生所需的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信